Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Beta titanium"
Filter
Filter
Article category
Keywords
Publication year
Authors
Research Article
Article image
[Korean]
Effect of Fe and Cr on ω Phase Formation in Metastable β-Ti Alloy
Sun-Young Park, Young-Bum Chun
J Powder Mater. 2025;32(4):354-360.   Published online August 29, 2025
DOI: https://doi.org/10.4150/jpm.2025.00220
  • 623 View
  • 5 Download
AbstractAbstract PDF
This study investigated the effects of Fe and Cr contents on ω phase formation and transformation during solution treatment and the subsequent aging process, for which four model alloys with varying Fe and Cr contents but keeping Mo equivalent of ~ 12.6 were prepared by plasma arc melting and fabricated into plates by hot forging followed by hot-rolling. The atherrmal ω phase was observed in all Ti alloys after solution treatment followed by water quenching through XRD and TEM analysis. The largest volume fraction of athermal ω phase is formed in Ti alloy with only Fe 4 wt.% among all Ti alloys, leading to the highest Vickers value due to hardening effect ω phase. It was found that not only Mo equivalent but also each characteristic of β stabilizing elements should be considered to understand a microstructure evolution and mechanical properties.
Article
Article image
[Korean]
Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys
HyoWoon Hwang, YongJae Lee, JiHwan Park, Dong-Geun Lee
J Powder Mater. 2022;29(4):325-331.   Published online August 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.4.325
  • 715 View
  • 6 Download
  • 2 Citations
AbstractAbstract PDF

Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of betastabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly betastabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.

Citations

Citations to this article as recorded by  
  • Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target
    Won Hee Lee, Chun Woong Park, Heeyeon Kim, Yuncheol Ha, Jongmin Byun, Young Do Kim
    journal of Korean Powder Metallurgy Institute.2024; 31(1): 43.     CrossRef
  • Effect of Strain Rate on Deformation Behaviors of Ti-12.1Mo -1Fe Metastable Beta Alloy
    In Kyeong Jin, Dong-Geun Lee
    Korean Journal of Metals and Materials.2023; 61(10): 741.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP