Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Camphor"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture
Ho-Suk Lee, Kyu-Hee Lee, Sung-Tag Oh, Young Do Kim, Myung-Jin Suk
J Korean Powder Metall Inst. 2018;25(4):336-339.   Published online August 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.4.336
  • 313 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphornaphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Citations

Citations to this article as recorded by  
  • Freeze Drying Process and Pore Structure Characteristics of Porous Cu with Various Sublimable Vehicles
    Gyuhwi Lee, Sung-Tag Oh, Myung-Jin Suk, Young-Keun Jeong
    Journal of Korean Powder Metallurgy Institute.2020; 27(3): 198.     CrossRef
Article image
[Korean]
Fabrication of Porous Al2O3 Film by Freeze Tape Casting
Ran-Hee Shin, Jun-Mo Koo, Young-Do Kim, Yoon-Soo Han
J Korean Powder Metall Inst. 2015;22(6):438-442.   Published online December 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.6.438
  • 212 View
  • 4 Download
AbstractAbstract PDF

Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the Al2O3 powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and Al2O3 powder volume fraction in acrylate in terms of the dendrite arm width.


Journal of Powder Materials : Journal of Powder Materials
TOP