Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Combinatorial approach"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process
Seoyeon Jeon, Suwon Park, Yongwook Song, Jiwon Park, Hyunyoung Park, Boram Lee, Hyunjoo Choi
J Powder Mater. 2023;30(6):463-469.   Published online December 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.6.463
  • 680 View
  • 24 Download
  • 3 Citations
AbstractAbstract PDF

Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/ electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α- Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.

Citations

Citations to this article as recorded by  
  • Trends in Materials Modeling and Computation for Metal Additive Manufacturing
    Seoyeon Jeon, Hyunjoo Choi
    journal of Korean Powder Metallurgy Institute.2024; 31(3): 213.     CrossRef
  • The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review
    Alex Lanzutti, Elia Marin
    Metals.2024; 14(8): 886.     CrossRef
  • Microstructural Effects on the Mechanical Properties of Ti-6Al-4V Fabricated by Direct Energy Deposition
    Juho Kim, Seoyeon Jeon, Hwajin Park, Taeyoel Kim, Hyunjoo Choi
    Journal of Powder Materials.2024; 31(4): 302.     CrossRef
Article image
Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment
Suwon Park, Yongwook Song, Jiyoon Yeo, Songyun Han, Hyunjoo Choi
J Powder Mater. 2023;30(3):255-261.   Published online June 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.3.255
  • 409 View
  • 2 Download
  • 3 Citations
AbstractAbstract PDF

Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Citations

Citations to this article as recorded by  
  • Trends in Materials Modeling and Computation for Metal Additive Manufacturing
    Seoyeon Jeon, Hyunjoo Choi
    journal of Korean Powder Metallurgy Institute.2024; 31(3): 213.     CrossRef
  • Microstructural Effects on the Mechanical Properties of Ti-6Al-4V Fabricated by Direct Energy Deposition
    Juho Kim, Seoyeon Jeon, Hwajin Park, Taeyoel Kim, Hyunjoo Choi
    Journal of Powder Materials.2024; 31(4): 302.     CrossRef
  • Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process
    Seoyeon Jeon, Suwon Park, Yongwook Song, Jiwon Park, Hyunyoung Park, Boram Lee, Hyunjoo Choi
    journal of Korean Powder Metallurgy Institute.2023; 30(6): 463.     CrossRef
Article image
3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys
Yongwook Song, Jungjoon Kim, Suwon Park, Hyunjoo Choi
J Powder Mater. 2022;29(3):233-239.   Published online June 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.3.233
  • 186 View
  • 0 Download
AbstractAbstract PDF

Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.


Journal of Powder Materials : Journal of Powder Materials
TOP