Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Luminescent property"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process
Weon Ho Shin, Seyun Kim, Hyung Mo Jeong
J Korean Powder Metall Inst. 2018;25(1):12-18.   Published online February 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.1.12
  • 101 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost SiO2 spheres to rareearth phosphor (YVO4:Eu3+, YVO4:Er3+, and YVO4:Nd3+) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The SiO2 sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core–shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of SiO2 nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of Eu3+, Er3+, and Nd3+. Moreover, the photoluminescent properties of the core–shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost SiO2 for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Citations

Citations to this article as recorded by  
  • Enhanced Energy-Transfer Properties in Core-Shell Photoluminescent Nanoparticles Using Mesoporous SiO2 Intermediate Layers
    Woo Hyeong Sim, Seyun Kim, Weon Ho Shin, Hyung Mo Jeong
    Korean Journal of Metals and Materials.2020; 58(2): 137.     CrossRef
Article image
Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property
Se-Min Ban, Jeong Min Park, Kyeong Youl Jung, Byung-Ki Choi, Kwang-Jung Kang, Myung Chang Kang, Dae-Sung Kim
J Korean Powder Metall Inst. 2017;24(6):457-463.   Published online December 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.6.457
  • 113 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Nanosized Gd2O3:Eu3+ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between Gd2O3:Eu3+ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged Gd2O3:Eu3+ and negatively charged mica above pH 6. To prepare Gd2O3:Eu3+-coated mica (Gd2O3:Eu/mica), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of Gd2O3:Eu3+. In spite of the low luminescence of the Gd2O3:Eu/mica, the luminescent property is recovered after calcination above 600°C and is enhanced by increasing the Gd2O3:Eu3+ coating amount. The Gd2O3:Eu/mica is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.

Citations

Citations to this article as recorded by  
  • Optimization of dispersed LaPO4:Tb nanosol and their photoluminescence properties
    Mahboob Ullah, Se-Min Ban, Dae-Sung Kim
    Optical Materials.2019; 97: 109366.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP