Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Self-powered system"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials
Kwi-Il Park
J Korean Powder Metall Inst. 2018;25(3):263-272.   Published online June 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.3.263
  • 196 View
  • 0 Download
  • 5 Citations
AbstractAbstract PDF

Recent developments in the field of energy harvesting technology that convert ambient energy resources into electricity enable the use of self-powered energy systems in wearable and portable electronic devices without the need for additional external power sources. In particular, piezoelectric-effect-based flexible energy harvesters have drawn much attention because they can guarantee power generation from ubiquitous mechanical and vibrational movements. In response to demand for sustainable, permanent, and remote use of real-life personal electronics, many research groups have investigated flexible piezoelectric energy harvesters (f-PEHs) that employ nanoscaled piezoelectric materials such as nanowires, nanoparticles, nanofibers, and nanotubes. In those attempts, they have proven the feasibility of energy harvesting from tiny periodic mechanical deformations and energy utilization of f-PEH in commercial electronic devices. This review paper provides a brief overview of f-PEH devices based on piezoelectric nanomaterials and summarizes the development history, output performance, and applications.

Citations

Citations to this article as recorded by  
  • Development and Characterization of Hafnium-Doped BaTiO3 Nanoparticle-Based Flexible Piezoelectric Devices
    HakSu Jang, Hyeon Jun Park, Gwang Hyeon Kim, Gyoung-Ja Lee, Jae-Hoon Ji, Donghun Lee, Young Hwa Jung, Min-Ku Lee, Changyeon Baek, Kwi-Il Park
    JOURNAL OF SENSOR SCIENCE AND TECHNOLOGY.2024; 33(1): 34.     CrossRef
  • Enhanced Piezoelectric Performance of Composite Fibers Based on Lead-Free BCTZ Ceramics and P(VDF-TrFE) Piezopolymer for Self-Powered Wearable Sensors
    Sung Cheol Park, Chaeyoung Nam, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Kwi-Il Park
    ACS Sustainable Chemistry & Engineering.2022; 10(43): 14370.     CrossRef
  • A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles
    Dong Yeol Hyeon, Kwi-Il Park
    Journal of Korean Powder Metallurgy Institute.2019; 26(2): 119.     CrossRef
  • Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate
    Dong Yeol Hyeon, Kwi-Il Park
    Energy Technology.2019;[Epub]     CrossRef
  • Piezoelectric Energy Harvesting from Two-Dimensional Boron Nitride Nanoflakes
    Gyoung-Ja Lee, Min-Ku Lee, Jin-Ju Park, Dong Yeol Hyeon, Chang Kyu Jeong, Kwi-Il Park
    ACS Applied Materials & Interfaces.2019; 11(41): 37920.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP