Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Seong-Ho Baek"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications
Dong Yeon Kim, Young-Min Jeong, Seong-Ho Baek, Injoon Son
J Korean Powder Metall Inst. 2019;26(3):231-236.   Published online June 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.3.231
  • 117 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Ni hydroxides (Ni(OH)2) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the Ni(OH)2 structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based OH in the solution; thus, the growth rate and morphological structure of Ni(OH)2 are influenced by HMT concentration. When Ni(OH)2 is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, Ni(OH)2 is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed Ni(OH)2 grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the Ni(OH)2 electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

Citations

Citations to this article as recorded by  
  • Review of Domestic Research Trends on Layered Double Hydroxide (LDH) Materials: Based on Research Articles in Korean Citation Index (KCI)
    Seon Yong Lee, YoungJae Kim, Young Jae Lee
    Economic and Environmental Geology.2023; 56(1): 23.     CrossRef
Article image
Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications
Seong-Ho Baek, Il-Kyu Park
J Korean Powder Metall Inst. 2015;22(6):391-395.   Published online December 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.6.391
  • 114 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF

We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate [Zn(NO3)2 ·6H2O] and hexamine [(CH2)6N4] as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.

Citations

Citations to this article as recorded by  
  • Synthesis of Planar-Type ZnO Powder in Non-Nano Scale Dimension and Its Application in Ultraviolet Protection Cosmetics
    Jung-Hwan Lee, Gun-Sub Lee, Eung-Nam Park, Dong-Hyeon Jo, So-Won Kim, Hee-Chul Lee
    Materials.2023; 16(5): 2099.     CrossRef
  • Rapid consolidation of nanostuctured WC-FeAl3 by pulsed current activated heating and its mechanical properties
    In-Jin Shon, Seok-Jae Lee
    International Journal of Refractory Metals and Hard Materials.2017; 65: 69.     CrossRef
  • Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties
    Young-Tae Kwon, Sung-Oong Kang, Ji-Ae Cheon, Yoseb Song, Jong-Jin Lee, Yong-Ho Choa
    Applied Surface Science.2017; 415: 2.     CrossRef
  • Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth
    Il-Kyu Park
    Journal of Korean Powder Metallurgy Institute.2016; 23(4): 270.     CrossRef
Article image
Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate
Seong-Ho Baek, Il-Kyu Park
J Korean Powder Metall Inst. 2015;22(5):331-336.   Published online October 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.5.331
  • 154 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF

We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of 1~1.5 μm. The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is 0.7 μA/cm2 which is a typical output range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.

Citations

Citations to this article as recorded by  
  • Fabrication of a Graphene/ZnO based p-n junction device and its ultraviolet photoresponse properties
    Young-Tae Kwon, Sung-Oong Kang, Ji-Ae Cheon, Yoseb Song, Jong-Jin Lee, Yong-Ho Choa
    Applied Surface Science.2017; 415: 2.     CrossRef
  • Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications
    Il-Kyu Park
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 102.     CrossRef
  • Morphology Control of ZnO Nanostructures by Surfactants During Hydrothermal Growth
    Il-Kyu Park
    Journal of Korean Powder Metallurgy Institute.2016; 23(4): 270.     CrossRef
  • Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications
    Seong-Ho Baek, Il-Kyu Park
    Journal of Korean Powder Metallurgy Institute.2015; 22(6): 391.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP