Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Seung-Hyun Lee"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
High-Contrast Electrochromism of Porous Tungsten Oxide Thin Films Prepared by Electrodeposition
Sung-Hyeok Park, Ho-Jin Mo, Jae-Keun Lim, Sang-Gwon Kim, Jae-Hyo Choi, Seung-Hyun Lee, Se-Hwa Jang, Kyung-Ho Cha, Yoon-Chae Nah
J Korean Powder Metall Inst. 2018;25(1):7-11.   Published online February 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.1.7
  • 218 View
  • 8 Download
  • 1 Citations
AbstractAbstract PDF

In this study, we synthesize tungsten oxide thin films by electrodeposition and characterize their electrochromic properties. Depending on the deposition modes, compact and porous tungsten oxide films are fabricated on a transparent indium tin oxide (ITO) substrate. The morphology and crystal structure of the electrodeposited tungsten oxide thin films are investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray photoelectron spectroscopy is employed to verify the chemical composition and the oxidation state of the films. Compared to the compact tungsten oxides, the porous films show superior electrochemical activities with higher reversibility during electrochemical reactions. Furthermore, they exhibit very high color contrast (97.0%) and switching speed (3.1 and 3.2 s). The outstanding electrochromic performances of the porous tungsten oxide thin films are mainly attributed to the porous structure, which facilitates ion intercalation/deintercalation during electrochemical reactions.

Citations

Citations to this article as recorded by  
  • A fast-response electrochromic device based on a composite gel film comprising triphenylamine derivatives and WO3
    Xuejian Zhang, Jinming Zeng, Zipeng Xu, Mimi Zhu, Ping Liu
    New Journal of Chemistry.2021; 45(12): 5503.     CrossRef
Article image
Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation
Seung-Hyun Lee, Dong-Ryoul Min, Kwang-Min Lee
J Korean Powder Metall Inst. 2007;14(3):165-172.
DOI: https://doi.org/10.4150/KPMI.2007.14.3.165
  • 116 View
  • 0 Download
AbstractAbstract PDF
The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were 100sim1000°C;and'100sim500°C, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of 1sim100;nm;and;10sim100;nm, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Journal of Powder Materials : Journal of Powder Materials
TOP