Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Soo-Hyun Joo"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder
Soo-Hyun Joo, Hyo Wook Park, Soo Young Kang, Eon Sik Lee, Hee-Soo Kang, Hyong Seop Kim
J Korean Powder Metall Inst. 2015;22(2):105-110.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.105
  • 170 View
  • 2 Download
AbstractAbstract PDF

In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are 34.3 μm and 3.2 μm, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

Article image
[Korean]
Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method
Hyo Wook Park, Soo-Hyun Joo, Eon Sik Lee, Ki Hyuk Kwon, Hyong Seop Kim
J Korean Powder Metall Inst. 2015;22(1):10-14.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.10
  • 138 View
  • 1 Download
AbstractAbstract PDF

In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.

Article image
[Korean]
Microstructure and Mechanical Behavior of Ultrafine Grained Bulk Al Processed by High Pressure Torsion of the Al Powders
Soo-Hyun Joo, Seung-Chae Yoon, Chong-Soo Lee, Hyong-Seop Kim
J Korean Powder Metall Inst. 2010;17(1):52-58.
DOI: https://doi.org/10.4150/KPMI.2010.17.1.052
  • 205 View
  • 0 Download
  • 3 Citations
AbstractAbstract PDF
Bulk nanostructured metallic materials are generally synthesized by bottom-up processing which starts from powders for assembling bulk materials. In this study, the bottom-up powder metallurgy and High Pressure Torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. After the HPT process at 473K, the disk samples reached a steady state condition when the microstructure and properties no longer evolve, and equilibrium boundaries with high angle grain boundaries (HAGBs) were dominant. The well dispersed alumina particles played important role of obstacles to dislocation glide and to grain growth, and thus, reduced the grain size at elevated temperature. The small grain size with HAGBs resulted in high strength and good ductility.

Citations

Citations to this article as recorded by  
  • Ultrafine Grained Cu-diamond Composites using High Pressure Torsion
    Eun-Yoo Yoon, Dong-Jun Lee, Taek-Soo Kim, Hyoung-Seop Kim
    Journal of Korean Powder Metallurgy Institute.2012; 19(3): 204.     CrossRef
  • Densification of Copper Powders using High-pressure Torsion Process
    Dong-Jun Lee, Eun-Yoo Yoon, Soo-Young Kang, Jung-Hwan Lee, Hyoung-Seop Kim
    Journal of Korean Powder Metallurgy Institute.2012; 19(5): 333.     CrossRef
  • Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion
    Eun-Yoo Yoon, Dong-Jun Lee, Ha-Neul Kim, Hee-Soo Kang, Eon-Sik Lee, Hyoung-Seop Kim
    Journal of Korean Powder Metallurgy Institute.2011; 18(5): 411.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP