Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Spark plasma sintering process"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder
Ju-Hun Kim, Ik-Hyun Oh, Jeong-Han Lee, Sung-Kil Hong, Hyun-Kuk Park
J Korean Powder Metall Inst. 2019;26(2):132-137.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.132
  • 316 View
  • 8 Download
  • 2 Citations
AbstractAbstract PDF

Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and 0.429 μm, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Citations

Citations to this article as recorded by  
  • Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property
    Gyu-Sang Oh, Sung-Min Lee, Sung-Soo Ryu
    Journal of Korean Powder Metallurgy Institute.2020; 27(4): 293.     CrossRef
  • Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering
    Eui Seon Lee, Jongmin Byun, Young-Keun Jeong, Sung-Tag Oh
    Korean Journal of Materials Research.2020; 30(6): 321.     CrossRef
Article image
[English]
Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method
Thuyet-Nguyen Minh, Hai-Nguyen Hong, Won Joo Kim, Ho Yoon Kim, Jin-Chun Kim
J Korean Powder Metall Inst. 2016;23(3):213-220.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.3.213
  • 305 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

Citations

Citations to this article as recorded by  
  • Fabrication of nanocomposites by electric explosion of stainless steel capillaries filled with carbon nanotubes
    Tao Jiang, Zhongyu Hou
    Applied Surface Science.2020; 513: 145824.     CrossRef
  • Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel
    Jin-Ju Park, Eun-Kwang Park, Gyoung-Ja Lee, Chang-Kyu Rhee, Min-Ku Lee
    Applied Surface Science.2017; 415: 143.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP