Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Spreadability"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
[Korean]
Improving Flow Property of AlSi10Mg Powder for Additive Manufacturing via Surface Treatment using Methyltrichlorosilane
Sang Cheol Park, In Yeong Kim, Young Il Kim, Dae-Kyeom Kim, Kee-Ahn Lee, Soong Ju Oh, Bin Lee
J Powder Mater. 2022;29(5):363-369.   Published online October 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.5.363
  • 311 View
  • 2 Download
  • 1 Citations
AbstractAbstract PDF

AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a highquality additive manufacturing product.

Citations

Citations to this article as recorded by  
  • Residual Stress Analysis of Additive Manufactured A356.2 Aluminum Alloys using X-Ray Diffraction Methods
    SangCheol Park, InYeong Kim, Young Il Kim, Dae-Kyeom Kim, Soong Ju Oh, Kee-Ahn Lee, Bin Lee
    Korean Journal of Metals and Materials.2023; 61(7): 534.     CrossRef
Review Paper
Article image
[Korean]
Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process
Bin Lee, Dae-Kyeom Kim, Young Il Kim, Do Hoon Kim, Yong Son, Kyoung-Tae Park, Taek-Soo Kim
J Korean Powder Metall Inst. 2020;27(6):509-519.   Published online December 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.6.509
  • 437 View
  • 3 Download
  • 7 Citations
AbstractAbstract PDF

A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Citations

Citations to this article as recorded by  
  • Enhanced flow properties of SiO 2 nanoparticles coated low-cost hydrogenation-dehydrogenation Ti-6Al-4V powder for powder bed fusion process
    Ukju Gim, Sehun Kim, Tae hu Kang, Jongik Lee, Sanghee Jeong, Jimin Han, Bin Lee
    Powder Metallurgy.2025; 68(2): 95.     CrossRef
  • SiO 2 nanoparticle-coated Ti-6Al-4V spherical powder for powder bed fusion additive manufacturing process
    Jongik Lee, Taehoo Kang, Ukju Gim, Sehun Kim, Sanghee Jung, Jimin Han, Bin Lee
    Powder Metallurgy.2025;[Epub]     CrossRef
  • Effect of Support Structure on Residual Stress Distribution in Ti-6Al-4V Alloy Fabricated by Laser Powder Bed Fusion
    Seungyeon Lee, Haeum Park, Min Jae Baek, Dong Jun Lee, Jae Wung Bae, Ji-Hun Yu, Jeong Min Park
    Journal of Powder Materials.2025; 32(3): 244.     CrossRef
  • A Study on Fabrication of PCD Endmill Holder using PBF Additive Manufacturing Technology
    Min-Woo Sa, Ho-Min Son, Kyung-Hwan Park, Sang-Geun Lee, Dae-Ho Shin, Dong-Gyu Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 124.     CrossRef
  • Rheological Characteristic Analysis Methods and Tests of Metal Powders for PBF Additive Manufacturing
    Wan-Sik Woo, Ho-Jin Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(10): 1.     CrossRef
  • Residual Stress Analysis of Additive Manufactured A356.2 Aluminum Alloys using X-Ray Diffraction Methods
    SangCheol Park, InYeong Kim, Young Il Kim, Dae-Kyeom Kim, Soong Ju Oh, Kee-Ahn Lee, Bin Lee
    Korean Journal of Metals and Materials.2023; 61(7): 534.     CrossRef
  • Enhancing spreadability of hydrogenation-dehydrogenation titanium powder and novel method to characterize powder spreadability for powder bed fusion additive manufacturing
    Young Il Kim, Dae-Kyeom Kim, InYeong Kim, Sang Cheol Park, Dongju Lee, Bin Lee
    Materials & Design.2022; 223: 111247.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP