Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Tin Oxide"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
Synthesis of the Multi-layered SnO Nanoparticles and Enhanced Performance of Lithium-Ion Batteries by Heat treatment
So Yi Lee, Yoon Myung, Kyu-Tae Lee, Jaewon Choi
J Korean Powder Metall Inst. 2021;28(6):455-461.   Published online December 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.6.455
  • 325 View
  • 2 Download
  • 1 Citations
AbstractAbstract PDF

In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165°C. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400°C under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.

Citations

Citations to this article as recorded by  
  • Synthesis and electrochemical properties of multi-layered SnO/rGO composite as anode materials for sodium ion batteries
    So Yi Lee, Honggyu Seong, Geongil Kim, Youngho Jin, Joon Ha Moon, Wonbin Nam, Sung Kuk Kim, MinHo Yang, Jaewon Choi
    Applied Surface Science.2023; 612: 155859.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP