Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-12.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
A Model on the Densification of Agglomerates of Powders
Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J Korean Powder Metall Inst > Volume 11(4); 2004 > Article
분말 응집체의 치밀화에 관한 모델
A Model on the Densification of Agglomerates of Powders
Journal of Korean Powder Metallurgy Institute 2004;11(4):301-307
DOI: https://doi.org/10.4150/KPMI.2004.11.4.301
  • 113 Views
  • 0 Download
  • 2 Crossref
  • 0 Scopus

Successful implementation of the powder forming process requires a detailed understanding of several interacting phenomena. The aim is to better control the process variables and to optimize the design parameters. A number of studies were carried out using various constitutive models that take the density change during powder forming into account. Most of them were developed for powders and sintered porous metals, but few of them can describe powder agglomerates, whose behaviour is different from that of uniformly arranged powders. The modification is needed to account for the effect of agglomeration on densification behaviour. Incorporating powder agglomeration into a constitutive model is of considerable importance, as it provides a possibility of relating the powder densification response to microstructural characteristics of powder particles, especially in case of nano powders. In this paper, we proposed a new powder agglomerate model in order to describe the unique densification behaviour of nano powders. The proposed model was applied to the densification of powder agglomerates during cold isostatic pressing.

Related articles

Journal of Powder Materials : Journal of Powder Materials
TOP