Abstract
Fecralloy is the promising materials for high temperature exhaust filtering system due to the excellent its oxidation resistance property. In this research, Fecralloy nanoparticles coated Fecralloy thin foil was prepared by a single nozzle electrospray system in order to increase surface area of Fecralloy foil. Fecralloy nanoparticles were fabricated by electrical wire explosion method in ethanol using Fecralloy wires as a source material. Electrospray modes with applied D.C voltages to Fecralloy colloidal solution were investigated to make a stable cone-jet mode. Coated layers with and without additional heat treatment were observed by FE-SEM (field emission-scanning electron microscope) and tape test for evaluating their adhesion to substrate were performed as well.
Citations
Citations to this article as recorded by
- Performance and techno-economic evaluation of a high-efficiency electrospray cyclone
Jun Su Park, Dae-Gyun Lee, Kang-San Lee, Jin-Han Kim, Jung Hoon Yoo, Hang Joo Shin, Young-Chan Choi, Young-joo Lee, YoungMin Woo, Meehye Lee, Jong Won Choi
Journal of Environmental Chemical Engineering.2024; 12(3): 112908. CrossRef - Electrospray and Thermal Treatment Process for Enhancing Surface Roughness of Fecralloy Coating Layer on a Large Sized Substrate
Hye Moon Lee, Hye Young Koo, Sangsun Yang, Dahee Park, Sooho Jung, Jung-Yeul Yun
Journal of Korean Powder Metallurgy Institute.2017; 24(1): 46. CrossRef - Alloyability of warm formed FeCrAl powder compacts
M.M. Rahman, A.A.A. Talib
Materials Today Communications.2015; 4: 42. CrossRef - Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process
Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
Journal of Korean Powder Metallurgy Institute.2014; 21(1): 55. CrossRef - Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
Journal of Korean Powder Metallurgy Institute.2012; 19(6): 435. CrossRef