The electrochemical performance for the corrosion of zinc anodes according to particle size and shape as anode in Zn/air batteries was study. We prepared five samples of Zn powder with different particle size and morphology. For analysis the particle size of theme, we measured particle size analysis (PSA). As the result, sample (e) had smaller particle size with 10.334µm than others. For measuring the electrochemical performance of them, we measured the cyclic voltammetry and linear polarization in three electrode system (half-cell). For measuring the morphology change of them before and after cyclic voltammetry, we measured Field Emission Scanning Electron Microscope (FE-SEM). From the cyclic voltammetry, as the zinc powder had small size, we knew that it had large diffusion coefficient. From the linear polarization, as the zinc powder had small size, it was a good state with high polarization resistance as anode in Zn/air batteries. From the SEM images, the particle size had increased due to the dendrite formation after cyclic voltammetry. Therefore, the sample (e) with small size would have the best electrochemical performance between these samples.