Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "316L stainless steel"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process
Hyunjin Joo, Jeongmin Woo, Yongho Sohn, Kee-Ahn Lee
J Powder Mater. 2022;29(1):1-7.   Published online February 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.1.1
  • 195 View
  • 5 Download
  • 1 Citations
AbstractAbstract PDF

This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

Citations

Citations to this article as recorded by  
  • Additive Manufacturing of SS316L/IN718 Bimetallic Structure via Laser Powder Bed Fusion
    Asif Mahmud, Nicolas Ayers, Thinh Huynh, Yongho Sohn
    Materials.2023; 16(19): 6527.     CrossRef
Article image
Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting
Jeong Min Park, Jin Myoung Jeon, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
J Korean Powder Metall Inst. 2018;25(6):475-481.   Published online December 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.6.475
  • 293 View
  • 5 Download
  • 11 Citations
AbstractAbstract PDF

Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Citations

Citations to this article as recorded by  
  • Selective laser melting additive manufactured H13 tool steel for aluminum extrusion die component construction
    Evangelos Giarmas, Vasileios Tsakalos, Emmanuel Tzimtzimis, Nikolaos Kladovasilakis, Ioannis Kostavelis, Dimitrios Tzovaras, Dimitrios Tzetzis
    The International Journal of Advanced Manufacturing Technology.2024; 133(9-10): 4385.     CrossRef
  • Nanoindentation Creep Behavior of Additively Manufactured H13 Steel by Utilizing Selective Laser Melting Technology
    Evangelos Giarmas, Emmanouil K. Tzimtzimis, Nikolaos Kladovasilakis, Dimitrios Tzovaras, Dimitrios Tzetzis
    Materials.2024; 17(15): 3756.     CrossRef
  • A Parametric Study on the L-PBF Process of an AlSi10Mg Alloy for High-Speed Productivity of Automotive Prototype Parts
    Yeonha Chang, Hyomoon Joo, Wanghyun Yong, Yeongcheol Jo, Seongjin Kim, Hanjae Kim, Yeon Woo Kim, Kyung Tae Kim, Jeong Min Park
    Journal of Powder Materials.2024; 31(5): 390.     CrossRef
  • Development of multi-defect diagnosis algorithm for the directed energy deposition (DED) process with in situ melt-pool monitoring
    Hyewon Shin, Jimin Lee, Seung-Kyum Choi, Sang Won Lee
    The International Journal of Advanced Manufacturing Technology.2023; 125(1-2): 357.     CrossRef
  • Corrosion Resistance of Laser Powder Bed Fused AISI 316L Stainless Steel and Effect of Direct Annealing
    Kichang Bae, Dongmin Shin, Jonghun Lee, Seohan Kim, Wookjin Lee, Ilguk Jo, Junghoon Lee
    Materials.2022; 15(18): 6336.     CrossRef
  • Experimental investigation on the effect of process parameters in additive/subtractive hybrid manufacturing 316L stainless steel
    Chengming Tang, Jibin Zhao, Zhiguo Wang, Yuhui Zhao, Tianran Wang
    The International Journal of Advanced Manufacturing Technology.2022; 121(3-4): 2461.     CrossRef
  • Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel
    Man Jae Sagong, Eun Seong Kim, Jeong Min Park, Gangaraju Manogna Karthik, Byeong-Joo Lee, Jung-Wook Cho, Chong Soo Lee, Takayoshi Nakano, Hyoung Seop Kim
    Materials Science and Engineering: A.2022; 847: 143318.     CrossRef
  • Effect of heat treatment on microstructural heterogeneity and mechanical properties of 1%C-CoCrFeMnNi alloy fabricated by selective laser melting
    Jeong Min Park, Eun Seong Kim, Hyeonseok Kwon, Praveen Sathiyamoorthi, Kyung Tae Kim, Ji-Hun Yu, Hyoung Seop Kim
    Additive Manufacturing.2021; 47: 102283.     CrossRef
  • Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion
    Eo Ryeong Lee, Se Eun Shin, Naoki Takata, Makoto Kobashi, Masaki Kato
    Materials.2020; 13(18): 3927.     CrossRef
  • Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel
    Jin Myoung Jeon, Jeong Min Park, Ji-Hun Yu, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
    Materials Science and Engineering: A.2019; 763: 138152.     CrossRef
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP