Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Compressive strength"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Mechanical Properties of Bulk Graphite using Artificial Graphite Scrap as a Function of Particle Size
Sang Hye Lee, Sang Min Lee, Won Pyo Jang, Jae Seung Roh
J Korean Powder Metall Inst. 2021;28(1):13-19.   Published online February 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.1.13
  • 285 View
  • 6 Download
  • 7 Citations
AbstractAbstract PDF

Bulk graphite is manufactured using graphite scrap as the filler and phenolic resin as the binder. Graphite scrap, which is the by-product of processing the final graphite product, is pulverized and sieved by particle size. The relationship between the density and porosity is analyzed by measuring the mechanical properties of bulk graphite. The filler materials are sieved into mean particle sizes of 10.62, 23.38, 54.09, 84.29, and 126.64 μm. The bulk graphite density using the filler powder with a particle size of 54.09 μm is 1.38 g/cm3, which is the highest value in this study. The compressive strength tends to increase as the bulk graphite density increases. The highest compressive strength of 43.14 MPa is achieved with the 54.09 μm powder. The highest flexural strength of 23.08 MPa is achieved using the 10.62 μm powder, having the smallest average particle size. The compressive strength is affected by the density of bulk graphite, and the flexural strength is affected by the filler particle size of bulk graphite.

Citations

Citations to this article as recorded by  
  • Effect of Microstructural Change under Pressure during Isostatic Pressing on Mechanical and Electrical Properties of Isotropic Carbon Blocks
    Tae-Sub Byun, Sang-Hye Lee, Suk-Hwan Kim, Jae-Seung Roh
    Materials.2024; 17(2): 387.     CrossRef
  • Feasibility assessment of manufacturing carbonized blocks from rice husk charcoal
    Young-Min Hwang, Jae-Seung Roh, Gibeop Nam
    Biomass Conversion and Biorefinery.2024; 14(20): 26409.     CrossRef
  • Improving the packing and mechanical properties of graphite blocks by controlling filler particle-size distribution
    Hye in Hwang, Ji Hong Kim, Ji Sun Im
    Advanced Composite Materials.2024; 33(5): 762.     CrossRef
  • Effect of Impregnation and Graphitization on EDM Performance of Graphite Blocks Using Recycled Graphite Scrap
    Sang-Hye Lee, Dong-Pyo Jeon, Hyun-Yong Lee, Dong-Gu Lee, Jae-Seung Roh
    Processes.2023; 11(12): 3368.     CrossRef
  • Ultrafine Graphite Scrap and Carbon Blocks Prepared by High-Solid-Loading Bead Milling and Conventional Ball Milling: A Comparative Assessment
    Chonradee Amnatsin, Waroot Kanlayakan, Siraprapa Lhosupasirirat, Nattarut Verojpipath, Boonsueb Pragobjinda, Tanakorn Osotchan, Chakrit Sirisinha, Toemsak Srikhirin
    ACS Omega.2023; 8(50): 47919.     CrossRef
  • The Effect of the Heating Rate during Carbonization on the Porosity, Strength, and Electrical Resistivity of Graphite Blocks Using Phenolic Resin as a Binder
    Sang-Hye Lee, Jae-Hyun Kim, Woo-Seok Kim, Jae-Seung Roh
    Materials.2022; 15(9): 3259.     CrossRef
  • Rheological Behaviour of Hard-Metal Carbide Powder Suspensions at High Shear Rates
    B. Hausnerová, P. Sáha, J. Kubát, T. Kitano, J. Becker
    Journal of Polymer Engineering.2000;[Epub]     CrossRef
Article image
The Effects of Kaolin Addition on the Properties of Reticulated Porous Diatomite-kaolin Composites
Chae-Young Lee, Sujin Lee, Jang-Hoon Ha, Jongman Lee, In-Hyuck Song, Kyoung-Seok Moon
J Korean Powder Metall Inst. 2020;27(4):325-332.   Published online August 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.4.325
  • 140 View
  • 3 Download
AbstractAbstract PDF

In this study, the effects of kaolin addition on the properties of reticulated porous diatomite-kaolin composites are investigated. A reticulated porous diatomite-kaolin composite is prepared using the replica template method. The microstructure and pore characteristics of the reticulated porous diatomite-kaolin composites are analyzed by controlling the PPI value (45, 60, and 80 PPI) of the polyurethane foam (which are used as the polymer template), the ball-milling time (8 and 24 h), and the amount of kaolin (0–50 wt. %). The average pore size decreases as the amount of kaolin increases in the reticulated porous diatomite-kaolin composite. As the amount of kaolin increases, it can be determined that the amount of inter-connected pore channels is reduced because the plate-shaped kaolin particles connect the gaps between irregular diatomite particles. Consequently, a higher kaolin percentage affects the overall mechanical properties by improving the pore channel connectivity. The effect of kaolin addition on the basic properties of the reticulated porous diatomite-kaolin composite is further discussed with characterization data such as pore size distribution, scanning electron microscopy images, and compressive strength.

Article image
Characteristics of the Ceramic Filter with the Control of Particle Size and Graphite Additive for the Hazardous Particle and Gas Removal
Eul-Hun Cho, Kun-Jae Lee
J Korean Powder Metall Inst. 2014;21(6):454-459.   Published online December 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.6.454
  • 50 View
  • 2 Download
AbstractAbstract PDF

In this study, the porous ceramic filter was developed to be able to remove both dust and hazardous gas contained in fuel gas at high temperature. The porous ceramic filters were fabricated and used as a catalyst support. And the effects have been investigated such as the mean particle size, organic content and addition of foaming agent on the porosity, compressive strength and pressure drop of ceramic filters. With the increase of mean powder size and the organic content for the cordierite filter, the porosity was increased, but the compressive strength and pressure drop were decreased. From the results of the research, the optimum condition for the fabrication of ceramic filters could be acquired and they had the porosity of 58%, the compressive strength of 13.4 MPa and the pressure drop of 250 Pa. It was expected that this ceramic filter was able to be applied to the glass melting furnace, combustor, and dust/toxic gas removal filter.


Journal of Powder Materials : Journal of Powder Materials
TOP