Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
5 "Finite element method"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials
Seung-Yong Yang, Jeoung Han Kim
J Powder Mater. 2023;30(1):29-34.   Published online February 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.1.29
  • 163 View
  • 2 Download
AbstractAbstract PDF

A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton–Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton–Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

Article image
[Korean]
Analysis of Anisotropic Plasticity of Additively Manufactured Structure using Modified Return Mapping Method
Seung-Yong Yang, Doo-Han Jin, Jeoung-Han Kim
J Powder Mater. 2022;29(4):303-308.   Published online August 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.4.303
  • 276 View
  • 2 Download
AbstractAbstract PDF

The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill’s quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified returnmapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.

Article image
[Korean]
Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder
Soo-Hyun Joo, Hyo Wook Park, Soo Young Kang, Eon Sik Lee, Hee-Soo Kang, Hyong Seop Kim
J Korean Powder Metall Inst. 2015;22(2):105-110.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.105
  • 170 View
  • 2 Download
AbstractAbstract PDF

In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are 34.3 μm and 3.2 μm, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

Article image
[Korean]
Analyses of Densification and Consolidation of Copper Powders during High-Pressure Torsion Process Using Finite Element Method
Dong Jun Lee, Eun Yoo Yoon
J Korean Powder Metall Inst. 2015;22(1):6-9.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.6
  • 239 View
  • 2 Download
  • 1 Citations
AbstractAbstract PDF

In this study, the behavior of densification of copper powders during high-pressure torsion (HPT) at room temperature is investigated using the finite element method. The simulation results show that the center of the workpiece is the first to reach the true density of copper during the compressive stage because the pressure is higher at the center than the periphery. Subsequently, whole workpiece reaches true density after compression due to the high pressure. In addition, the effective strain is increased along the radius during torsional stage. After one rotation, the periphery shows that the effective strain is increased up to 25, which is extensive deformation. These high pressure and severe strain do not only play a key role in consolidation of copper powders but also make the matrix harder by grain refinement.

Citations

Citations to this article as recorded by  
  • Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions
    Soo-Hyun Joo, Dong-Hai Pi, Jing Guo, Hidemi Kato, Sunghak Lee, Hyoung Seop Kim
    Metals and Materials International.2016; 22(3): 383.     CrossRef
Article image
[Korean]
Prediction of Martensite Fraction in the Sintering Hardening Process of Ni/Mo Alloy Powder (FLC-4608) Using the Finite Element Method
Hyo Wook Park, Soo-Hyun Joo, Eon Sik Lee, Ki Hyuk Kwon, Hyong Seop Kim
J Korean Powder Metall Inst. 2015;22(1):10-14.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.10
  • 138 View
  • 1 Download
AbstractAbstract PDF

In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.


Journal of Powder Materials : Journal of Powder Materials
TOP