Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "High-pressure torsion (HPT)"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Fabrication of FeCuNi alloy by mechanical alloying followed by consolidation using high-pressure torsion
Peyman Asghari-Rad, Yongju Kim, Nhung Thi-Cam Nguyen, Hyoung Seop Kim
J Korean Powder Metall Inst. 2020;27(1):1-7.   Published online February 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.1.1
  • 212 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

In this research, a new medium-entropy alloy with an equiatomic composition of FeCuNi was designed using a phase diagram (CALPHAD) technique. The FeCuNi MEA was produced from pure iron, copper, and nickel powders through mechanical alloying. The alloy powders were consolidated via a high-pressure torsion process to obtain a rigid bulk specimen. Subsequently, annealing treatment at different conditions was conducted on the four turn HPT-processed specimen. The microstructural analysis indicates that an ultrafine-grained microstructure is achieved after post-HPT annealing, and microstructural evolutions at various stages of processing were consistent with the thermodynamic calculations. The results indicate that the post-HPT-annealed microstructure consists of a dual-phase structure with two FCC phases: one rich in Cu and the other rich in Fe and Ni. The kernel average misorientation value decreases with the increase in the annealing time and temperature, indicating the recovery of HPT-induced dislocations.

Citations

Citations to this article as recorded by  
  • Effects of nickel content and annealing temperature on the magnetic characteristics of nanostructured FeCu alloys
    Abderrahmane Younes
    Journal of Materials Science: Materials in Electronics.2024;[Epub]     CrossRef
Article image
Analyses of Densification and Consolidation of Copper Powders during High-Pressure Torsion Process Using Finite Element Method
Dong Jun Lee, Eun Yoo Yoon
J Korean Powder Metall Inst. 2015;22(1):6-9.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.6
  • 108 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

In this study, the behavior of densification of copper powders during high-pressure torsion (HPT) at room temperature is investigated using the finite element method. The simulation results show that the center of the workpiece is the first to reach the true density of copper during the compressive stage because the pressure is higher at the center than the periphery. Subsequently, whole workpiece reaches true density after compression due to the high pressure. In addition, the effective strain is increased along the radius during torsional stage. After one rotation, the periphery shows that the effective strain is increased up to 25, which is extensive deformation. These high pressure and severe strain do not only play a key role in consolidation of copper powders but also make the matrix harder by grain refinement.

Citations

Citations to this article as recorded by  
  • Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions
    Soo-Hyun Joo, Dong-Hai Pi, Jing Guo, Hidemi Kato, Sunghak Lee, Hyoung Seop Kim
    Metals and Materials International.2016; 22(3): 383.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP