Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Hydrogen reduction behavior"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures
Ju-Yeon Han, Gyuhwi Lee, Hyunji Kang, Sung-Tag Oh
J Korean Powder Metall Inst. 2019;26(5):410-414.   Published online October 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.5.410
  • 204 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

The hydrogen reduction behavior of the CuO-Co3O4 powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and Co3O4 to Co, respectively. The measured temperature and activation energy for the reduction of Co3O4 are explained on the basis of the effect of pre-reduced Cu particles.

Citations

Citations to this article as recorded by  
  • Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders
    Gyuhwi Lee, Ju-Yeon Han, Sung-Tag Oh
    Journal of Korean Powder Metallurgy Institute.2020; 27(3): 193.     CrossRef
Article image
[Korean]
Fabrication of Mo-Cu Powders by Ball Milling and Hydrogen Reduction of MoO3-CuO Powder Mixtures
Hyunji Kang, Sung-Tag Oh
J Korean Powder Metall Inst. 2018;25(4):322-326.   Published online August 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.4.322
  • 192 View
  • 1 Download
  • 3 Citations
AbstractAbstract PDF

The hydrogen reduction behavior of MoO3-CuO powder mixture for the synthesis of homogeneous Mo-20 wt% Cu composite powder is investigated. The reduction behavior of ball-milled powder mixture is analyzed by XRD and temperature programmed reduction method at various heating rates in Ar-10% H2 atmosphere. The XRD analysis of the heat-treated powder at 300°C shows Cu, MoO3, and Cu2MoO5 phases. In contrast, the powder mixture heated at 400°C is composed of Cu and MoO2 phases. The hydrogen reduction kinetic is evaluated by the amount of peak shift with heating rates. The activation energies for the reduction, estimated by the slope of the Kissinger plot, are measured as 112.2 kJ/mol and 65.2 kJ/mol, depending on the reduction steps from CuO to Cu and from MoO3 to MoO2, respectively. The measured activation energy for the reduction of MoO3 is explained by the effect of pre-reduced Cu particles. The powder mixture, hydrogen-reduced at 700°C, shows the dispersion of nano-sized Cu agglomerates on the surface of Mo powders.

Citations

Citations to this article as recorded by  
  • Synthesis of Mo-Cu nanocomposite powder by hydrogen reduction of copper nitrate coated MoO3 powder mixture
    Ji Won Choi, Ji Young Kim, Youngmin Kim, Eui Seon Lee, Sung-Tag Oh
    Materials Letters.2024; 377: 137565.     CrossRef
  • Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders
    Hyunji Kang, Ju-Yeon Han, Sung-Tag Oh
    Journal of Korean Powder Metallurgy Institute.2019; 26(1): 1.     CrossRef
  • Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures
    Ju-Yeon Han, Gyuhwi Lee, Hyunji Kang, Sung-Tag Oh
    Journal of Korean Powder Metallurgy Institute.2019; 26(5): 410.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP