Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "K. B. Kim"
Filter
Filter
Article category
Keywords
Publication year
Authors
Article
Article image
[Korean]
Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis
H. J. Park, Y. S. Kim, S. H. Hong, J. T. Kim, J. Y. Cho, W. H. Lee, K. B. Kim
J Korean Powder Metall Inst. 2015;22(4):229-233.   Published online August 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.4.229
  • 259 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass powder under of 0.2 kJ generated by a 450 μF capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at 150°C for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped Fe2O3 and needle-shaped Fe3O4 are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

Citations

Citations to this article as recorded by  
  • Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions
    Soo-Hyun Joo, Dong-Hai Pi, Jing Guo, Hidemi Kato, Sunghak Lee, Hyoung Seop Kim
    Metals and Materials International.2016; 22(3): 383.     CrossRef
Article image
[English]
How to Improve the Ductility of Nanostructured Materials
J. Eckert, C. Duhamel, J. Das, S. Scudino, Z. Zhang, K. B. Kim
J Korean Powder Metall Inst. 2006;13(5):340-350.
DOI: https://doi.org/10.4150/KPMI.2006.13.5.340
  • 121 View
  • 0 Download
AbstractAbstract PDF
Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

Journal of Powder Materials : Journal of Powder Materials
TOP