Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Machinability"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials
Guk-Hyun Jeong, Kwang-Ho Kim, Myung-Chang Kang
J Korean Powder Metall Inst. 2014;21(4):301-306.   Published online August 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.4.301
  • 60 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-tocut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid Ti2AlC ceramic bulk materials were systematically examined. The bulk samples mainly consisted of Ti2AlC materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the Ti2AlC was observed at 1100°C for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of Ti2AlC MAX phase. The hardness and electrical conductivity of Ti2AlC were higher than that of Ti 6242 alloy at sintering temperature of 1000°C~1100°C. Consequently, the machinability of the hybrid Ti2AlC bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

Citations

Citations to this article as recorded by  
  • Evaluation of Material Characteristics with Sintering Temperature in Ti2AlC MAX Phase Material using Spark Plasma Sintering Method
    Chang-Hun Lee, Gyung Rae Baek, Hee Sang Jung, Young-Keun Jeong, Myung Chang Kang
    Journal of Korean Powder Metallurgy Institute.2015; 22(3): 175.     CrossRef
Article image
The Effects of MoS2 Addition on the Mechanical Properties of Fe-Cr-Mn-C-V P/M Alloy
Geon-Hong Kim, Hyun Seok Yang, Man-Sik Kong
J Korean Powder Metall Inst. 2014;21(4):294-300.   Published online August 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.4.294
  • 51 View
  • 0 Download
AbstractAbstract PDF

The connecting rod is one of the most important parts in automotive engines, transforming the reciprocal motion of a piston generated by internal combustion into the rotational motion of a crankshaft. Recent advances in high performance automobile engines demand corresponding technological breakthroughs in the materials for engine parts. In the present research, the powder metallurgy (P/M) process was used to replace conventional quenching and/or tempering processes for mass production and ultimately for more cost-efficient manufacturing of high strength connecting rods. The development of P/M alloy powder was undertaken not only to achieve the improvement in mechanical properties, but also to enhance the machinability of the P/M processed connecting rods. Specifically MoS2 powders were added as lubricants to non-normalizing Fe-Cr-Mn-V-C alloy powder to improve the post-sintering machinability. The effects of MoS2 addition on the microstructure, mechanical properties, and machining characteristics were investigated.


Journal of Powder Materials : Journal of Powder Materials
TOP