Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Magnetic materials"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles
Hyeonseo Song, Hajun Lee, Junghyo Kim, Jiyun Kim
J Korean Powder Metall Inst. 2021;28(6):509-517.   Published online December 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.6.509
  • 227 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Citations

Citations to this article as recorded by  
  • Advanced Magnetic Actuation: Harnessing the Dynamics of Sm2Fe17–xCuxN3 Composites
    Kangmo Koo, Young-Tae Kwon, Ji Young Park, Yong-Ho Choa
    ACS Applied Materials & Interfaces.2024; 16(9): 11872.     CrossRef
Article image
[Korean]
A Study on the Microstructure and Magnetic Properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 Nanocrystalline Soft Magnetic Alloys with varying P Content
Hyun Ah Im, Kyoung-Hoon Bae, Yeong gyun Nam, Subong An, Sangsun Yang, Yong-Jin Kim, Jung Woo Lee, Jae Won Jeong
J Korean Powder Metall Inst. 2021;28(4):293-300.   Published online August 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.4.293
  • 217 View
  • 7 Download
AbstractAbstract PDF

We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1–4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10–20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67- 0.67xPxCu0.8 (x = 1–4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460°C exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.


Journal of Powder Materials : Journal of Powder Materials
TOP