Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Rare earth element"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review Papers
Article image
Standardization Status of Rare Earth Elements Recycling in ISO TC 298
Mi Hye Lee, Yosep Song, Ji Sun On, Seung Hwan Yoon, Munhwan Han, Bum Sung Kim, Taek-soo Kim, Bin Lee
J Powder Mater. 2022;29(2):159-165.   Published online April 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.2.159
  • 148 View
  • 2 Download
AbstractAbstract PDF

Rare earth elements, which are important components of motors, are in high demand and thus constantly get more expensive. This tendency is driven by the growth of the electric vehicle market, as well as environmental issues associated with rare-earth metal manufacturing. TC 298 of the ISO manages standardization in the areas of rare-earth recycling, measurement, and sustainability. Korea, a resource-poor country, is working on international standardization projects that focus on recycling and encouraging the domestic adoption of international standards. ITU-T has previously issued recommendations regarding the recycling of rare-earth metals from e-waste. ISO TC 298 expands on the previous recommendations and standards for promoting the recycling industry. Recycling-related rare earth standards and drafts covered by ISO TC 298, as well as Korea’s strategies, are reviewed and discussed in this article.

Article image
Standardization of Rare Earth Elements in ISO TC 298 and Korea's Standardization Strategy
Nu Si A Eom, Sardar Farhat Abbas, Haq Muhammad Aneeq, Rasheed Mohammad Zarar, Mi Hye Lee, Bum Sung Kim, Taek-Soo Kim, Bin Lee
J Korean Powder Metall Inst. 2019;26(3):251-257.   Published online June 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.3.251
  • 120 View
  • 1 Download
AbstractAbstract PDF

Since the ISO decided to deal with rare-earth elements at the 298th Technical Committee (TC) in 2015, Korea has participated in four plenary meetings and proposed four standards as of June 2019. The status of ISO TC 298, the standards covered by the TC, and the standardization strategies of Korea are summarized. Korean delegations are actively engaged in WG2, which deals with recycling, proposing four standards for fostering the rare-earth recycling industry. However, the participation of domestic experts is still low compared with the increase in the number of working groups and the number of standards in TC 298. The aim of this article is to summarize the current status of ISO international standards related to rare-earth elements, to encourage relevant experts to participate in standardization, and to develop international standards that accurately reflect the realities of the industry.

Articles
Article image
Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2 Cathode Lithium-ion Battery Material
Yoo-Young Kim, Jong-Keun Ha, Kwon-Koo Cho
J Korean Powder Metall Inst. 2019;26(1):49-57.   Published online February 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.1.49
  • 194 View
  • 3 Download
  • 2 Citations
AbstractAbstract PDF

Layered LiNi0.83Co0.11Mn0.06O2 cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, nondoping pristine LiNi0.83Co0.11Mn0.06O2 cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical α-NaFeO2-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dualdoped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Citations

Citations to this article as recorded by  
  • Numerical approach for lithium-ion battery performance considering various cathode active material composition for electric vehicles using 1D simulation
    Heewon Choi, Nam-gyu Lim, Seong Jun Lee, Jungsoo Park
    Journal of Mechanical Science and Technology.2021; 35(6): 2697.     CrossRef
  • Synthesis of CeVO4-V2O5 nanowires by cation-exchange method for high-performance lithium-ion battery electrode
    Xueliu Xu, Shiying Chang, Taofang Zeng, Yidan Luo, Dong Fang, Ming Xie, Jianhong Yi
    Journal of Alloys and Compounds.2021; 887: 161237.     CrossRef
Article image
Trends and Implications of International Standardization for Rare Earths
Sardar Farhat Abbas, Sang-Hyun lee, Bin Lee, Bum-Sung Kim, Taek-Soo Kim
J Korean Powder Metall Inst. 2018;25(2):165-169.   Published online April 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.2.165
  • 118 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

Rare earth elements (REEs) are considered to be vital to modern industry due to their important roles in applications such as permanent magnets, automobile production, displays, and many more. The imbalance between demand and supply of REEs can be solved by recycling processes. Regarding the needs of industry and society, the International Organization for Standardization, Technical Committee 298 (ISO/TC298) Rare Earths has been recently launched for developing international standards on rare earth elements. In accordance with the suggestion of its constituents, it is tentatively working to develop the appropriate standards under five working groups (WG) on terms and definitions (WG1), element recycling (WG2), environmental stewardship (WG3), packaging, labelling, marking, transport, and storage (WG4), and testing analysis (WG5). The scope and structure of ISO/TC298 on the topic of rare earths is discussed in this document.

Citations

Citations to this article as recorded by  
  • Synthesis and magnetic properties of Sm2Co17 particles using salt-assisted spray pyrolysis and a reduction-diffusion process
    Tae-Yeon Hwang, Jimin Lee, Min Kyu Kang, Gyutae Lee, Jongryoul Kim, Yong-Ho Choa
    Applied Surface Science.2019; 475: 986.     CrossRef
  • Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues
    Seo-Ho Shin, Hyun-Ock Kim, Kyung-Taek Rim
    Safety and Health at Work.2019; 10(4): 409.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP