Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Transparent conducting electrodes"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Multicomponent IGZO Ceramics for Transparent Electrode Target Fabricated from Oxides and Nitrates
Hyun-Kwun Lee, Ji-Hye Yoon, Kyeong-Sik Cho
J Korean Powder Metall Inst. 2019;26(5):375-382.   Published online October 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.5.375
  • 212 View
  • 1 Download
AbstractAbstract PDF

Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were In2O3:Ga2O3:ZnO = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at 1200°C results in the formation of InGaZnO4, InGaZn3O6, and InGaZn5O8 phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at 1450°C for 12 h. The InGaZn3O6 ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.

Article image
[Korean]
Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode
Bon-Ryul Koo, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2017;24(2):153-163.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.153
  • 232 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (< 10-3 Ω cm) and high transparency (>80%) in the visible region. The solutionbased process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.

Citations

Citations to this article as recorded by  
  • Electrically conductive and anti-corrosive coating on copper foil assisted by polymer-nanocomposites embedded with graphene
    Han Kim, Hyemin Lee, Hyo-Ryoung Lim, Hong-Baek Cho, Yong-Ho Choa
    Applied Surface Science.2019; 476: 123.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP