a School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju 52828, Republic of Korea
b Advanced Metals Division, Titanium Department, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
© The Korean Powder Metallurgy Institute. All rights reserved.
• A backpropagation neural network model has been successfully developed to correlate the complicated non-linear relationship between process parameters and density and hardness of nano-sized titanium nitride reinforced in Ti-6Al-4V titanium alloy.
• The model estimated output values and experimental values are in excellent compatibility with the high value of correlation coefficients in the case of train and test datasets for all three models.
• The reported result shows that the sintering condition (temperature and time) have a slight impact on sintered density and hardness. In contrast, vol.% of TiN particles show a great impact on densification and hardness.
TiN Vol.% | Temp. (°C) | Time (min) | Experimental | ANN predictions | ||||
---|---|---|---|---|---|---|---|---|
|
||||||||
Relative density | Effective density | Hardness (HV) | Relative density | Effective density | Hardness (HV) | |||
|
||||||||
0 | 1000 | 10 | 99.54 | 4.41 | 389 | 99.564 | 4.41 | 390.673 |
0 | 1000 | 30 | 99.66 | 4.415 | 395 | 99.296 | 4.415 | 395.062 |
0 | 1100 | 30 | 99.89 | 4.425 | 409 | 99.882 | 4.421 | 409.439 |
0 | 1100 | 10 | 99.77 | 4.42 | 401 | 99.852 | 4.412 | 404.614 |
1 | 1100 | 30 | 99.74 | 4.42 | 430 | 99.721 | 4.419 | 430.358 |
1 | 1100 | 10 | 99.65 | 4.41 | 426 | 99.656 | 4.41 | 424.194 |
1 | 1000 | 10 | 99.32 | 4.41 | 417 | 99.295 | 4.403 | 405.652 |
1 | 1000 | 30 | 99.09 | 4.41 | 421 | 99.092 | 4.407 | 412.943 |
2 | 1000 | 30 | 98.87 | 4.39 | 442 | 98.883 | 4.39 | 441.82 |
2 | 1100 | 10 | 99.09 | 4.4 | 453 | 99.318 | 4.407 | 460.363 |
2 | 1000 | 10 | 98.87 | 4.39 | 438 | 98.897 | 4.39 | 425.725 |
2 | 1100 | 30 | 99.43 | 4.415 | 505 | 99.443 | 4.416 | 471.884 |
3 | 1000 | 10 | 98.42 | 4.38 | 451 | 98.423 | 4.38 | 449.129 |
3 | 1100 | 30 | 99.1 | 4.41 | 544 | 99.102 | 4.41 | 543.572 |
3 | 1100 | 10 | 98.87 | 4.4 | 518 | 98.872 | 4.4 | 519.163 |
3 | 1000 | 30 | 98.65 | 4.39 | 514 | 98.645 | 4.375 | 481.942 |
4 | 1000 | 30 | 97.98 | 4.37 | 531 | 97.986 | 4.37 | 530.934 |
4 | 1000 | 10 | 97.53 | 4.35 | 475 | 97.534 | 4.377 | 475.96 |
4 | 1100 | 10 | 98.2 | 4.38 | 584 | 98.205 | 4.38 | 582.823 |
4 | 1100 | 30 | 98.89 | 4.41 | 602 | 98.641 | 4.392 | 604.899 |
Model | Hidden layers and neurons (HL-HN1-HN2) | Iterations | Momentum term | Learning rate |
---|---|---|---|---|
|
||||
Relative density | 2 7 7 | 30000 | 0.7 | 0.8 |
Effective density | 2 6 6 | 50000 | 0.6 | 0.6 |
Hardness | 2 7 7 | 60000 | 0.7 | 0.6 |