In order to obtain homogeneous and high quality products in powder compaction forging process, it is very important to control stress, strain, density and density distributions. Therefore, it is necessary to understand quantitatively the elasto-plastic deformation and densification behaviors of porous metals and metal powders. In this study, elasto-plastic finite element method using Lee-Kim's pressure dependent porous material yield function has been used for the analysis of three dimensional indenting process. The analysis predicts deformed geometry, stress, strain and density distribution and load. The calculated load is in good agreement with experimental one. The calculated results do not show axisymmetric distributions because of the edge effect. The core part which is in contact with the indentor and the outer diagonal edge part are in compressive stress states and the middle part is in tensile stress state. As a results, it can be concluded that three dimensional analysis is more realistic than axisymmetric assumption approach.