Abstract
SnO_2 nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of SnO_2 and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the SnO_2 nanotubes exhibited excellent cyclability and reversible capacity of 580mAhg-1 up to 25 cycles at 100mAg-1 as compared to SnO_2 nanoparticles with a capacity of sim200mAhg-1. Such excellent performance of the SnO_2 nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.
Citations
Citations to this article as recorded by

- Fabrication of Nanowire by Electrospinning Process Using Nickel Oxide Particle Recovered from MLCC
Haein Shin, Jongwon Bae, Minsu Kang, Kun-Jae Lee
journal of Korean Powder Metallurgy Institute.2023; 30(6): 502. CrossRef - A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process
Il-Jeong Park, Geon-Hong Kim, Dae-Weon Kim, Hee-Lack Choi, Hang-Chul Jung
Journal of the Korean Crystal Growth and Crystal Technology.2016; 26(3): 95. CrossRef - Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator
No Ho Lee, Jae Rok Shin, Ji Een Yoo, Dong Hun You, Bon-Ryul Koo, Sung Woo Lee, Hyo-Jin Ahn, Byung Joon Choi
Journal of Korean Powder Metallurgy Institute.2015; 22(5): 321. CrossRef