Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Activation"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating
Seong-Jae Jeong, Mi-Se Chang, Jae-Won Jeong, Sang-Sun Yang, Young-Tae Kwon
J Powder Mater. 2022;29(6):511-516.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.511
  • 184 View
  • 5 Download
AbstractAbstract PDF

Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn–Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Article image
Effect of Oxygen Content in the Tungsten Powder Fabricated by Electrical Explosion of Wire Method on the Behavior of Spark-Plasma Sintering
Cheol-Hee Kim, Seong Lee, Byung-Kee Kim, Ji Soon Kim
J Korean Powder Metall Inst. 2014;21(6):447-453.   Published online December 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.6.447
  • 61 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at 400°C for 2 hour and at 500°C for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at 1200-1600°C for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of 1600°C for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of 95.85 kJ/mol−1 was obtained, which is remarkably smaller than the reported ones of 380~460 kJ/mol−1 for pressureless sintering of micron-scale tungsten powders.

Citations

Citations to this article as recorded by  
  • Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size
    Na-Yeon Kwon, Young-Keun Jeong, Sung-Tag Oh
    Journal of Korean Powder Metallurgy Institute.2017; 24(5): 384.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP