Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Deposition temperature"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
The Effect of Diffusion Barrier and thin Film Deposition Temperature on Change of Carbon Nanotubes Length
Soon-kyu Hong, Hyung Woo Lee
J Korean Powder Metall Inst. 2016;24(3):248-253.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.248
  • 227 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

In this study, we investigate the effect of the diffusion barrier and substrate temperature on the length of carbon nanotubes. For synthesizing vertically aligned carbon nanotubes, thermal chemical vapor deposition is used and a substrate with a catalytic layer and a buffer layer is prepared using an e-beam evaporator. The length of the carbon nanotubes synthesized on the catalytic layer/diffusion barrier on the silicon substrate is longer than that without a diffusion barrier because the diffusion barrier prevents generation of silicon carbide from the diffusion of carbon atoms into the silicon substrate. The deposition temperature of the catalyst and alumina are varied from room temperature to 150°C, 200°C, and 250°C. On increasing the substrate temperature on depositing the buffer layer on the silicon substrate, shorter carbon nanotubes are obtained owing to the increased bonding force between the buffer layer and silicon substrate. The reason why different lengths of carbon nanotubes are obtained is that the higher bonding force between the buffer layer and the substrate layer prevents uniformity of catalytic islands for synthesizing carbon nanotubes.

Citations

Citations to this article as recorded by  
  • A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process
    Chae-young Woo, Yeongsu Jo, Soon-kyu Hong, Hyung Woo Lee
    Journal of Korean Powder Metallurgy Institute.2019; 26(1): 11.     CrossRef
  • Fabrication of robust, ultrathin and light weight, hydrophilic, PVDF-CNT membrane composite for salt rejection
    Vivek Dhand, Soon Kyu Hong, Luhe Li, Jong-Man Kim, Soo Hyung Kim, Kyong Yop Rhee, Hyung Woo Lee
    Composites Part B: Engineering.2019; 160: 632.     CrossRef
Article image
[Korean]
Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method
Yeon-Ku Kim, Weon-Ju Kim, SungHwan Yeo, Moon-Sung Cho
J Korean Powder Metall Inst. 2014;21(6):434-440.   Published online December 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.6.434
  • 270 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at 1500-1650°C has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at 1500°C obtains nearly stoichiometric composition, the composition of the SiC layer coated at 1300-1400°C shows discrepancy from stoichiometric ratio(1:1). 3-7 μm grain size of SiC layer coated at 1500°C is decreased to sub-micrometer (<1 μm) -2 μm grain size when coated at 1400°C, and further decreased to nano grain size when coated at 1300- 1350°C. Moreover, the high density of SiC layer (≥3.19 g/cm3) which is easily obtained at 1500°C coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

Citations

Citations to this article as recorded by  
  • High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results
    Kang Hyun Choi, Hyun-Su Kim, Chang Hyun Park, Gon-Ho Kim, Kyoung Ho Baik, Sung Ho Lee, Taehyung Kim, Hyoung Seop Kim
    Metals and Materials International.2016; 22(5): 817.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP