Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Gas sensor"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application
Jinsoo Park
J Korean Powder Metall Inst. 2019;26(1):28-33.   Published online February 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.1.28
  • 316 View
  • 3 Download
AbstractAbstract PDF

The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and O3 because of their high sensitivity, high response and high stability. Tungsten oxides (WO3) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of WO3. Nanosize WO3 are synthesized using the hydrothermal method. Asprepared WO3 nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze (MxWO3, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that WO3 can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of WO3.

Article image
[English]
The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property
Tae Hyung Kim, Yoseb Song, Chan-Gi Lee, Yong-Ho Choa
J Korean Powder Metall Inst. 2017;24(5):351-356.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.351
  • 472 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of H2S gas.

Citations

Citations to this article as recorded by  
  • Effects of porosity and particle size on the gas sensing properties of SnO2 films
    Min Ah Han, Hyun-Jong Kim, Hee Chul Lee, Jin-Seong Park, Ho-Nyun Lee
    Applied Surface Science.2019; 481: 133.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP