Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Scraps"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review Paper
Article image
[Korean]
Current Status of Smelting and Recycling Technologies of Tungsten
Ho-Sang Sohn
J Korean Powder Metall Inst. 2021;28(4):342-351.   Published online August 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.4.342
  • 542 View
  • 21 Download
  • 2 Citations
AbstractAbstract PDF

Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300–1700°C in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

Citations

Citations to this article as recorded by  
  • The Current Status and Securing Strategies of Core Mineral Tungsten Resources
    Dohyun Jeong, Seongmin Kim, Hoseok Jeon
    Journal of the Korean Society of Mineral and Energy Resources Engineers.2023; 60(5): 341.     CrossRef
  • Tungsten distribution and vertical migration in soils near a typical abandoned tungsten smelter
    Huihui Du, Yang Li, Dan Wan, Chuanqiang Sun, Jing Sun
    Journal of Hazardous Materials.2022; 429: 128292.     CrossRef
Article
Article image
[Korean]
Basic Study on the Recycling of Waste Tungsten Scraps by the Oxidation and Reduction Process
Sang-Uk Kim, Ji-seok Yun, Tae-Wook Kim, Bong-Hwi Cho, In-Ho Kim, Sang-Mu Kim, Chang-Bin Song
J Korean Powder Metall Inst. 2017;24(1):34-40.   Published online February 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.1.34
  • 224 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

This study is carried out to obtain basic data regarding oxidation and reduction reactions, originated on the recycling of waste tungsten hard scraps by oxidation and reduction processes. First, it is estimated that the theoretical Gibbs free energy for the formation reaction of WO2 and WO3 are calculated as ΔG1,000K= -407.335 kJ/mol and ΔG1,000K = -585.679 kJ/mol, from the thermodynamics data reported by Ihsan Barin. In the experiments, the oxidation of pure tungsten rod by oxygen is carried out over a temperature range of 700-1,000°C for 1 h, and it is possible to conclude that the oxidation reaction can be represented by a relatively linear relationship. Second, the reduction of WO2 and WO3 powder by hydrogen is also calculated from the same thermodynamics data, and it can be found that it was difficult for the reduction reaction to occur at 1,027°C, in the case of WO2, but it can happen for temperatures higher than 1127°C. On the other hand, WO3 reduction reaction occurs at the relatively low temperature of 827oC. Based on these results, the reduction experiments are carried out at a temperature range of 500-1,000°C for 15 min to 4 h, in the case of WO3 powder, and it is possible to conclude that the reduction at 900°C for 2h is needed for a perfect reduction reaction.

Citations

Citations to this article as recorded by  
  • A Basic Study on the Recycling of Wasted Cemented Carbide by the Zn Bath Process(Ⅰ)
    Kyung-Sik Kim, In-Ho Kim, Chan-Gi Lee, Chang-Bin Song
    Journal of the Korean Institute of Resources Recycling.2020; 29(6): 35.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP