Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Seok Choi"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Formation of Phases and Mechanical Properties of YSZ-Based Thermal Barrier Coating Materials Doped with Rare Earth Oxides
Yong Seok Choi, Gye Won Lee, Sahn Nahm, Yoon suk Oh
J Powder Mater. 2023;30(5):402-408.   Published online October 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.5.402
  • 579 View
  • 11 Download
AbstractAbstract PDF

This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.

Article image
[Korean]
Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ
Gye-Won Lee, Yong-Seok Choi, Chang-Woo Jeon, In-Hwan Lee, Yoon-Suk Oh
J Powder Mater. 2022;29(6):468-476.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.468
  • 580 View
  • 4 Download
AbstractAbstract PDF

Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200°C or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

Article image
[English]
Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2
Chang-Yeoul Kim, Jae-Seok Choi, Sung-Churl Choi
J Korean Powder Metall Inst. 2019;26(6):455-462.   Published online December 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.6.455
  • 286 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the antioxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.

Citations

Citations to this article as recorded by  
  • Role of TiC and WC Addition on the Mechanism and Kinetics of Isothermal Oxidation and High-Temperature Stability of ZrB2–SiC Composites
    Pradyut Sengupta, Indranil Manna
    High Temperature Corrosion of Materials.2024; 101(S1): 57.     CrossRef
Review Paper
Article image
[Korean]
Atomic Layer Deposition for Powder Coating
Seok Choi, Jeong Hwan Han, Byung Joon Choi
J Korean Powder Metall Inst. 2019;26(3):243-250.   Published online June 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.3.243
  • 356 View
  • 6 Download
  • 3 Citations
AbstractAbstract PDF

Atomic layer deposition (ALD) is widely used as a tool for the formation of near-atomically flat and uniform thin films in the semiconductor and display industries because of its excellent uniformity. Nowadays, ALD is being extensively used in diverse fields, such as energy and biology. By controlling the reactivity of the surface, either homogeneous or inhomogeneous coating on the shell of nanostructured powder can be accomplished by the ALD process. However, the ALD process on the powder largely depends on the displacement of powder in the reactor. Therefore, the technology for the fluidization of the powder is very important to redistribute its position during the ALD process. Herein, an overview of the three types of ALD reactors to agitate or fluidize the powder to improve the conformality of coating is presented. The principle of fluidization its advantages, examples, and limitations are addressed.

Citations

Citations to this article as recorded by  
  • High-performance of ZnO/TiO2 heterostructured thin-film photocatalyst fabricated via atomic layer deposition
    Ji Young Park, Jeong Hwan Han, Byung Joon Choi
    Journal of Vacuum Science & Technology A.2024;[Epub]     CrossRef
  • TiO2 Thin Film Coating on an Nb-Si–Based Superalloy via Atomic Layer Deposition
    Ji Young Park, Su Min Eun, Jongmin Byun, Byung Joon Choi
    journal of Korean Powder Metallurgy Institute.2024; 31(3): 255.     CrossRef
  • Atomic layer deposition of ZnO layers on Bi2Te3 powders: Comparison of gas fluidization and rotary reactors
    Myeong Jun Jung, Myeongjun Ji, Jeong Hwan Han, Young-In Lee, Sung-Tag Oh, Min Hwan Lee, Byung Joon Choi
    Ceramics International.2022; 48(24): 36773.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP