Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Thermoelectric properties"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
J Korean Powder Metall Inst. 2017;24(2):115-121.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.115
  • 110 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

In this work, p-type Bi−Sb−Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.

Citations

Citations to this article as recorded by  
  • Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites
    Seok-Min Yong
    Journal of Ceramic Processing Research.2019; 20(1): 59.     CrossRef
Article image
Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders
Kyung Tae Kim, Taesik Min, Dong Won Kim
J Korean Powder Metall Inst. 2016;23(4):263-269.   Published online August 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.4.263
  • 148 View
  • 0 Download
  • 6 Citations
AbstractAbstract PDF

Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type Bi2Te3 based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type Bi2Te3 composite powder has a composition of Bi0.5Sb1.5Te3 (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.

Citations

Citations to this article as recorded by  
  • Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model
    Linh Ba Vu, Soo-ho Jung, Jinhee Bae, Jong Min Park, Kyung Tae Kim, Injoon Son, Seungki Jo
    journal of Korean Powder Metallurgy Institute.2024; 31(2): 119.     CrossRef
  • Nanocomposite Strategy toward Enhanced Thermoelectric Performance in Bismuth Telluride
    Hua‐Lu Zhuang, Jincheng Yu, Jing‐Feng Li
    Small Science.2024;[Epub]     CrossRef
  • Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing
    Jinhee Bae, Seungki Jo, Kyung Tae Kim
    journal of Korean Powder Metallurgy Institute.2023; 30(4): 318.     CrossRef
  • Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys
    Eun-Ha Go, Rathinam Vasudevan, Babu Madavali, Peyala Dharmaiah, Min-Woo Shin, Sung Ho Song, Soon-Jik Hong
    Powder Metallurgy.2023; 66(5): 722.     CrossRef
  • The role of edge-oxidized graphene to improve the thermopower of p-type bismuth telluride-based thick films
    Young Min Cho, Kyung Tae Kim, Gi Seung Lee, Soo Hyung Kim
    Applied Surface Science.2019; 476: 533.     CrossRef
  • The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants
    Hyeongsub So, Eunpil Song, Yong-Ho Choa, Kun-Jae Lee
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 141.     CrossRef
Research Articles
Article image
Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material
Pradip Rimal, Sang-Min Yoon, Eun-Bin Kim, Chul-Hee Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2016;23(2):126-131.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.126
  • 67 View
  • 1 Download
  • 6 Citations
AbstractAbstract PDF

The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type Bi2Te2.7Se0.3 material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at 360°C. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Citations

Citations to this article as recorded by  
  • Tuning of power factor in bismuth selenide through Sn/Te co doping for low temperature thermoelectric applications
    Ganesh Shridhar Hegde, Ashwatha Narayana Prabhu, Ramakrishna Nayak, C. F. Yang, Y. K. Kuo
    Applied Physics A.2024;[Epub]     CrossRef
  • Enhancing thermoelectric performance of K-doped polycrystalline SnSe through band engineering tuning and hydrogen reduction
    Nan Xin, Yifei Li, Guihua Tang, Longyun Shen
    Journal of Alloys and Compounds.2022; 899: 163358.     CrossRef
  • The effect of powder pre-treatment on the mechanical and thermoelectric properties of spark plasma sintered N-type bismuth telluride
    Ahmed A. Abdelnabi, Vickram Lakhian, Joseph R. McDermid, James S. Cotton
    Journal of Alloys and Compounds.2021; 874: 159782.     CrossRef
  • Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
    Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 115.     CrossRef
  • The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants
    Hyeongsub So, Eunpil Song, Yong-Ho Choa, Kun-Jae Lee
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 141.     CrossRef
  • Enhanced thermoelectric cooling properties of Bi2Te3−xSex alloys fabricated by combining casting, milling and spark plasma sintering
    Seung Tek Han, Pradip Rimal, Chul Hee Lee, Hyo-Seob Kim, Yongho Sohn, Soon-Jik Hong
    Intermetallics.2016; 78: 42.     CrossRef
Article image
Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying
May Likha Lwin, Sang-min Yoon, Babu Madavali, Chul-Hee Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2016;23(2):120-125.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.120
  • 134 View
  • 1 Download
  • 4 Citations
AbstractAbstract PDF

P-type ternary Bi0.5Sb1.5Te3 alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300- 400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Citations

Citations to this article as recorded by  
  • Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
    Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 115.     CrossRef
  • Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body
    Han Ki Cho, Da Hye Kim, Hye Sun Sin, Churl-Hee Cho, Seungwoo Han
    Journal of the Korean Ceramic Society.2017; 54(6): 518.     CrossRef
  • Investigation of the Microstructure and Thermoelectric Properties of P-Type BiSbTe Alloys by Usage of Different Revolutions Per Minute (RPM) During Mechanical Milling
    S.-M. Yoon, B. Madavali, Y.-N. Yoon, S.-J. Hong
    Archives of Metallurgy and Materials.2017; 62(2): 1167.     CrossRef
  • Mechanical and thermoelectric properties of Bi2−xSbxTe3 prepared by using encapsulated melting and hot pressing
    Woo-Jin Jung, Il-Ho Kim
    Journal of the Korean Physical Society.2016; 69(8): 1328.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP