Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
10 "Nanofiber"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors
Hyewon Hwang, Seoyeon Yuk, Minsik Jung, Dongju Lee
J Korean Powder Metall Inst. 2021;28(6):470-477.   Published online December 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.6.470
  • 126 View
  • 2 Download
AbstractAbstract PDF

Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Article image
A Study on Morphology Control of (Ga1-xZnx)(N1-xOx) Nanofibers according to the Composition and Crystallinity of Oxide Nanofibers Synthesized by Electrospinning
Jeong Hyun Kim, Sung-Tag Oh, Young-In Lee
J Korean Powder Metall Inst. 2021;28(3):259-266.   Published online June 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.3.259
  • 137 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

The (Ga1-xZnx)(N1-xOx) solid solution is attracting extensive attention for photocatalytic water splitting and wastewater treatment owing to its narrow and controllable band gap. To optimize the photocatalytic performance of the solid solution, the key points are to decrease its band gap and recombination rate. In this study, (Ga1-xZnx)(N1-xOx) nanofibers with various Zn fractions are prepared by electrospinning followed by calcination and nitridation. The effect of the composition and crystallinity of electrospun oxide nanofibers on the morphology and optical properties of the obtained solid-solution nanofibers are systematically investigated. The results show that the final shape of the (Ga1-xZnx) (N1-xOx) material is greatly affected by the crystallinity of the oxide nanofibers before nitridation. The photocatalytic properties of (Ga1-xZnx)(N1-xOx) with different Ga:Zn atomic ratios are investigated by studying the degradation of rhodamine B under visible light irradiation.

Citations

Citations to this article as recorded by  
  • Fabrication of Nanowire by Electrospinning Process Using Nickel Oxide Particle Recovered from MLCC
    Haein Shin, Jongwon Bae, Minsu Kang, Kun-Jae Lee
    journal of Korean Powder Metallurgy Institute.2023; 30(6): 502.     CrossRef
Article image
Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation
Jimin Lee, Jongryoul Kim, Yong-Ho Choa
J Korean Powder Metall Inst. 2019;26(4):334-339.   Published online August 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.4.334
  • 122 View
  • 0 Download
AbstractAbstract PDF

To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, H2 gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Article image
Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation
Jimin Lee, Jongryoul Kim, Yong-Ho Choa
J Korean Powder Metall Inst. 2019;26(4):334-339.   Published online August 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.4.334
  • 147 View
  • 0 Download
AbstractAbstract PDF

To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, H2 gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Article image
Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports
Geon-Hyoung An, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2017;24(2):96-101.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.96
  • 217 View
  • 1 Download
  • 3 Citations
AbstractAbstract PDF

Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential (E1/2) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower E1/2 potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.

Citations

Citations to this article as recorded by  
  • Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance
    Geon-Hyoung An
    Korean Journal of Materials Research.2019; 29(8): 505.     CrossRef
  • Surface tailoring of zinc electrodes for energy storage devices with high-energy densities and long cycle life
    Geon-Hyoung An, SeungNam Cha, Jung Inn Sohn
    Applied Surface Science.2019; 467-468: 1157.     CrossRef
  • Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction
    Young-geun Lee, Geon-hyeong An, Hyo-Jin Ahn
    Korean Journal of Materials Research.2018; 28(3): 182.     CrossRef
Article image
Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction
Geon-Hyoung An, Eun-Hwan Lee, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2016;23(6):420-425.   Published online December 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.6.420
  • 133 View
  • 0 Download
AbstractAbstract PDF

N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential (E1/2) of 0.43 V, kinetic limiting current density of 6.2 mA cm-2, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower E1/2 potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.

Research Article
Article image
Spindle-shaped Fe2O3 Nanoparticle Coated Carbon Nanofiber Composites for Low-cost Dye-sensitized Solar Cells
Dong-Hyeun Oh, HyeLan An, Bon-Ryul Koo, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2016;23(2):95-101.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.95
  • 260 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Carbon nanofiber (CNF) composites coated with spindle-shaped Fe2O3 nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, Xray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped Fe2O3 NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density (12.82 mA/cm2), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, 11.61 mA/cm2, 51.96%, and 3.97%) and spindle-shaped Fe2O3 NPs (0.67 V, 11.45 mA/cm2, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped Fe2O3 NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped Fe2O3-NPcoated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.

Citations

Citations to this article as recorded by  
  • Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells
    Dong-Hyeun Oh, Bon-Ryul Koo, Yu-Jin Lee, HyeLan An, Hyo-Jin Ahn
    Korean Journal of Materials Research.2016; 26(11): 649.     CrossRef
Articles
Article image
Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure
Young-In Lee, Dae-Hwan Jang, Ki-Hoon Sung, Kyuman Lee, Yong-Ho Choa
J Korean Powder Metall Inst. 2016;23(1):38-42.   Published online February 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.1.38
  • 236 View
  • 5 Download
  • 4 Citations
AbstractAbstract PDF

BaTiO3-coated Fe nanofibers are synthesized via a three-step process. α-Fe2O3 nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The BaTiO3 coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the α-Fe2O3 to Fe. The thickness of the BaTiO3 shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the BaTiO3@Fe nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the BaTiO3@Fe nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.

Citations

Citations to this article as recorded by  
  • Research on Electromagnetic Wave Absorption Based on Electrospinning Technology†
    Baoding Li, Jing Qiao, Yue Liu, Haoyuan Tian, Wei Liu, Qilei Wu, Zhou Wang, Jiurong Liu, Zhihui Zeng
    Chinese Journal of Chemistry.2024; 42(7): 777.     CrossRef
  • Design, synthesis, and characterization of a porous ceramic-supported CeO2 nanocatalyst for CO -free H2 evolution
    Jimin Lee, Minseob Lim, Tae Sung Kim, Kee-Ryung Park, Jong-Sik Lee, Hong-Baek Cho, Joo Hyun Park, Yong-Ho Choa
    Applied Surface Science.2021; 548: 149198.     CrossRef
  • Electromagnetic wave absorption properties of Fe/MgO composites synthesized by a simple ultrasonic spray pyrolysis method
    Hyo-Ryoung Lim, Seung-Jae Jung, Tae-Yeon Hwang, Jimin Lee, Ki Hyeon Kim, Hong-baek Cho, Yong-Ho Choa
    Applied Surface Science.2019; 473: 1009.     CrossRef
  • Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation
    Jimin Lee, Jongryoul Kim, Yong-Ho Choa
    Journal of Korean Powder Metallurgy Institute.2019; 26(4): 334.     CrossRef
Article image
Synthesis of Perforated Polygonal Cobalt Oxides using a Carbon Nanofiber Template
Dong-Yo Sin, Geon-Hyoung An, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2015;22(5):350-355.   Published online October 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.5.350
  • 225 View
  • 2 Download
  • 2 Citations
AbstractAbstract PDF

Perforated polygonal cobalt oxide (CO3O4) is synthesized using electrospinning and a hydrothermal method followed by the removal of a carbon nanofiber (CNF) template. To investigate their formation mechanism, thermogravimetric analysis, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Xray photoelectron spectroscopy are examined. To obtain the optimum condition of perforated polygonal CO3O4, we prepare three different weight ratios of the Co precursor and the CNF template: sample A (Co precursor:CNF template- 10:1), sample B (Co precursor:CNF template-3.2:1), and sample C (Co precursor:CNF template-2:1). Among them, sample A exhibits the perforated polygonal CO3O4 with a thin carbon layer (5.7-6.2 nm) owing to the removal of CNF template. However, sample B and sample C synthesized perforated round CO3O4 and destroyed CO3O4 powders, respectively, due to a decreased amount of Co precursor. The increased amount of the CNF template prevents the formation of polygonal CO3O4. For sample A, the optimized weight ratio of the Co precursor and CNF template may be related to the successful formation of perforated polygonal CO3O4. Thus, perforated polygonal CO3O4 can be applied to electrode materials of energy storage devices such as lithium ion batteries, supercapacitors, and fuel cells.

Citations

Citations to this article as recorded by  
  • Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction
    Young-geun Lee, Geon-hyeong An, Hyo-Jin Ahn
    Korean Journal of Materials Research.2018; 28(3): 182.     CrossRef
  • Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports
    Geon-Hyoung An, Hyo-Jin Ahn
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 96.     CrossRef
Article image
Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors
Yu-Jin Lee, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2015;22(2):116-121.   Published online April 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.2.116
  • 175 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

WS2-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, WS2 nanoparticles were used as precursors and the amounts of WS2 precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from WS2 to WS2-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Citations

Citations to this article as recorded by  
  • WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor
    Ki-Wook Sung, Jung Soo Lee, Tae-Kum Lee, Hyo-Jin Ahn
    Korean Journal of Materials Research.2021; 31(8): 458.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP