Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
8 "Nanotubes"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
The Microstructure and Mechanical Properties of Y2O3-Dispersed Fe-C and Fe-CNT Sintered Steels
Jin Young Lim, Jung-Ho Ahn
J Korean Powder Metall Inst. 2017;24(4):298-301.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.298
  • 88 View
  • 0 Download
AbstractAbstract PDF

In the present work, we use multiwall carbon nanotubes (MWCNT) as the starting material for the fabrication of sintered carbon steel. A comparison is made with conventionally sintered carbon steel, where graphite is used as the starting material. Milling is performed using a horizontal mill sintered in a vacuum furnace. We analyze the grain size, number of pores, X-ray diffraction patterns, and microstructure. Changes in the physical properties are determined by using the Archimedes method and Vickers hardness measurements. The result shows that the use of MWCNTs instead of graphite significantly reduces the size and volume of the pores as well as the grain size after sintering. The addition of Y2O3.to the Fe-MWCNT samples further inhibits the growth of grains.

Article image
Expansion of Multi-wall Carbon Nanotubes and its Lithium Storage Property
Jung-Ho Ahn, Jeong-Seok Ahn
J Korean Powder Metall Inst. 2017;24(4):275-278.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.275
  • 60 View
  • 0 Download
AbstractAbstract PDF

In the present work, we apply a technique that has been used for the expansion of graphite to multiwall carbon nanotubes (MWCNT). The nanotubes are rapidly heated for a short duration, followed by immersion in acid solution, so that they undergo expansion. The diameter of the expanded CNTs is 5-10 times larger than that of the asreceived nanotubes. This results in considerable swelling of the CNTs and opening of the tube tips, which may facilitate the accessibility of lithium ions into the inner holes and the interstices between the nanotube walls. The Li-ion storage capacity of the expanded nanotubes is measured by using the material as an anode in Li-ion cells. The result show that the discharge capacity of the expanded nanotubes in the first cycle is as high as 2,160 mAh/g, which is about 28% higher than that of the un-treated MWCNT anode. However, the charge/discharge capacity quickly drops in subsequent cycles and finally reaches equilibrium values of ~370 mAh/g. This is possibly due to the destruction of the lattice structures by repeated intercalation of Li ions.

Article image
Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method
Thuyet-Nguyen Minh, Hai-Nguyen Hong, Won Joo Kim, Ho Yoon Kim, Jin-Chun Kim
J Korean Powder Metall Inst. 2016;23(3):213-220.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.3.213
  • 125 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

Citations

Citations to this article as recorded by  
  • Fabrication of nanocomposites by electric explosion of stainless steel capillaries filled with carbon nanotubes
    Tao Jiang, Zhongyu Hou
    Applied Surface Science.2020; 513: 145824.     CrossRef
  • Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel
    Jin-Ju Park, Eun-Kwang Park, Gyoung-Ja Lee, Chang-Kyu Rhee, Min-Ku Lee
    Applied Surface Science.2017; 415: 143.     CrossRef
Research Article
Article image
Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes
Hyeongcheol Cha, Yoon-Chae Nah
J Korean Powder Metall Inst. 2016;23(2):102-107.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.102
  • 81 View
  • 0 Download
AbstractAbstract PDF

We demonstrate the electrochromic properties of TiO2 nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized TiO2 nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed TiO2 nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized TiO2 nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous TiO2 nanotubes annealed at 150°C have the largest oxidation/ reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologenanchored TiO2 nanotubes show superior electrochromic properties compared to pristine TiO2 nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of TiO2 nanotubes.

Articles
Article image
Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures
Sanghoon Lee, Hyeongcheol Cha, Yoon-Chae Nah
J Korean Powder Metall Inst. 2015;22(5):326-330.   Published online October 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.5.326
  • 97 View
  • 1 Download
  • 3 Citations
AbstractAbstract PDF

In this study, we demonstrate the photoelectrochromic devices composed of TiO2 and WO3 nanostructures prepared by anodization method. The morphology and the crystal structure of anodized TiO2 nanotubes and WO3 nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a TiO2 nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at 450°C for 1 hr. The photoelectrode of TiO2 nanotube and the counter electrode of WO3 nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM I2 as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-WO3 electrode system shows better electrochromic performance compared toWO3 electrode.

Citations

Citations to this article as recorded by  
  • Synthesis and characterization of nitrogen-doped TiO 2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity
    Yifan Zhang, Hye Mee Yang, Soo-Jin Park
    Current Applied Physics.2018; 18(2): 163.     CrossRef
  • Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis
    Su-Yeol Yu, Chunghee Nam
    Journal of Korean Powder Metallurgy Institute.2017; 24(6): 483.     CrossRef
  • Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders
    Hyeong-Chul Kim, Jae-Kil Han
    Journal of Korean Powder Metallurgy Institute.2016; 23(1): 33.     CrossRef
Article image
Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering
Je-Se Moon, Sung-Sil Jung, Dae-Yeol Lee, Young-Keun Jeong, Myung Chang Kang, Chun-Dal Park, Kook-Tae Youn
J Korean Powder Metall Inst. 2015;22(3):157-162.   Published online June 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.3.157
  • 97 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out for the SKD11 carbon nanocomposites.

Citations

Citations to this article as recorded by  
  • Study on Effects of Mold Temperature on the Injection Molded Article
    J.-H. Han, Y.-C. Kim
    Archives of Metallurgy and Materials.2017; 62(2): 1271.     CrossRef
Article image
Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath
Seong-Hee Lee
J Korean Powder Metall Inst. 2014;21(5):343-348.   Published online October 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.5.343
  • 149 View
  • 0 Download
AbstractAbstract PDF

A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.

Article image
Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method
Seong-Hee Lee, Dongmin Hong
J Korean Powder Metall Inst. 2014;21(1):50-54.   Published online February 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.1.50
  • 100 View
  • 0 Download
  • 5 Citations
AbstractAbstract PDF

A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled in the tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/ Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhibited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; it decreased from 24 μm to 0.9 μm by the addition of only 1 volCNT. The average hardness of the composites increased by approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concluded that the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

Citations

Citations to this article as recorded by  
  • Torsion Property of the Structure Bonded Aluminum Foam Due to Impact
    G.W. Hwang, J.U. Cho
    Archives of Metallurgy and Materials.2017; 62(2): 1353.     CrossRef
  • A Fatigue Fracture Study on TDCB Aluminum Foam Specimen of Type Mode III Bonded with Adhesive
    J.H. Lee, J.U. Cho
    Archives of Metallurgy and Materials.2017; 62(2): 1359.     CrossRef
  • Experimental Study On Fracture Property Of Double Cantilever Beam Specimen With Aluminum Foam
    Y.C. Kim, H.K. Choi, J.U. Cho
    Archives of Metallurgy and Materials.2015; 60(2): 1151.     CrossRef
  • Experimental Study On Fracture Property Of Tapered Double Cantilever Beam Specimen With Aluminum Foam
    Y.C. Kim, S.S. Kim, J.U. Cho
    Archives of Metallurgy and Materials.2015; 60(2): 1459.     CrossRef
  • Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath
    Seong-Hee Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(5): 343.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP