Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
12 "Selective laser melting"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Article image
Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)
Gargi Roy, Raj Narayan Hajra, Woo Hyeok Kim, Jongwon Lee, Sangwoo Kim, Jeoung Han Kim
J Powder Mater. 2024;31(1):1-7.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.1
  • 1,607 View
  • 63 Download
  • 3 Citations
AbstractAbstract PDF

This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

Citations

Citations to this article as recorded by  
  • Mechanical response and microstructural evolution of a composite joint fabricated by green laser dissimilar welding of VCoNi medium entropy alloy and 17-4PH stainless steel
    Hadiseh Esmaeilpoor, Mahdi Aghaahmadi, Hyun Jong Yoo, Chan Woong Park, Tae Jin Jang, Seok Su Sohn, Jeoung Han Kim
    Journal of Materials Science & Technology.2025; 213: 223.     CrossRef
  • Comparative Review of the Microstructural and Mechanical Properties of Ti-6Al-4V Fabricated via Wrought and Powder Metallurgy Processes
    Raj Narayan Hajra, Gargi Roy, An Seong Min, Hyunseok Lee, Jeoung Han Kim
    Journal of Powder Materials.2024; 31(5): 365.     CrossRef
  • A Parametric Study on the L-PBF Process of an AlSi10Mg Alloy for High-Speed Productivity of Automotive Prototype Parts
    Yeonha Chang, Hyomoon Joo, Wanghyun Yong, Yeongcheol Jo, Seongjin Kim, Hanjae Kim, Yeon Woo Kim, Kyung Tae Kim, Jeong Min Park
    Journal of Powder Materials.2024; 31(5): 390.     CrossRef
Article
Article image
Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting
Joowon Suh, Sangyeob Lim, Hyung-Ha Jin, Young-Bum Chun, Suk Hoon Kang, Heung Nam Han
J Powder Mater. 2023;30(5):431-435.   Published online October 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.5.431
  • 101 View
  • 7 Download
AbstractAbstract PDF

An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ'' precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nanoindentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Review Paper
Article image
Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review
Jeong Min Park
J Powder Mater. 2022;29(2):132-151.   Published online April 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.2.132
  • 833 View
  • 18 Download
  • 6 Citations
AbstractAbstract PDF

The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.

Citations

Citations to this article as recorded by  
  • Investigation of effects of process parameters on microstructure and fracture toughness of SLM CoCrFeMnNi
    Joseph Agyapong, Diego Mateos, Aleksander Czekanski, Solomon Boakye-Yiadom
    Journal of Alloys and Compounds.2024; 987: 173998.     CrossRef
  • Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion
    Seungyeon Lee, Kyung Tae Kim, Ji-Hun Yu, Hyoung Seop Kim, Jae Wung Bae, Jeong Min Park
    journal of Korean Powder Metallurgy Institute.2024; 31(1): 8.     CrossRef
  • Data-driven Approach to Explore the Contribution of Process Parameters for Laser Powder Bed Fusion of a Ti-6Al-4V Alloy
    Jeong Min Park, Jaimyun Jung, Seungyeon Lee, Haeum Park, Yeon Woo Kim, Ji-Hun Yu
    journal of Korean Powder Metallurgy Institute.2024; 31(2): 137.     CrossRef
  • Cryogenic tensile behavior of carbon-doped CoCrFeMnNi high-entropy alloys additively manufactured by laser powder bed fusion
    Haeum Park, Hyeonseok Kwon, Kyung Tae Kim, Ji-Hun Yu, Jungho Choe, Hyokyung Sung, Hyoung Seop Kim, Jung Gi Kim, Jeong Min Park
    Additive Manufacturing.2024; 86: 104223.     CrossRef
  • Microstructural evolution and high strain rate deformation response of SLM-printed CoCrFeMnNi after annealing and deep-cryogenic treatment
    Joseph Agyapong, Aleksander Czekanski, Solomon Boakye Yiadom
    Materials Characterization.2024; 218: 114506.     CrossRef
  • High-speed manufacturing-driven strength-ductility improvement of H13 tool steel fabricated by selective laser melting
    Yeon Woo Kim, Haeum Park, Young Seong Eom, Dong Gill Ahn, Kyung Tae Kim, Ji-hun Yu, Yoon Suk Choi, Jeong Min Park
    Powder Metallurgy.2023; 66(5): 582.     CrossRef
Articles
Article image
Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process
Hyunjin Joo, Jeongmin Woo, Yongho Sohn, Kee-Ahn Lee
J Powder Mater. 2022;29(1):1-7.   Published online February 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.1.1
  • 195 View
  • 5 Download
  • 1 Citations
AbstractAbstract PDF

This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

Citations

Citations to this article as recorded by  
  • Additive Manufacturing of SS316L/IN718 Bimetallic Structure via Laser Powder Bed Fusion
    Asif Mahmud, Nicolas Ayers, Thinh Huynh, Yongho Sohn
    Materials.2023; 16(19): 6527.     CrossRef
Article image
Effect of Stress Relieving Heat Treatment on Tensile and Impact Toughness Properties of AISI 316L Alloy Manufactured by Selective Laser Melting Process
Dong-Hoon Yang, Gi-Su Ham, Sun-Hong Park, Kee-Ahn Lee
J Korean Powder Metall Inst. 2021;28(4):301-309.   Published online August 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.4.301
  • 179 View
  • 2 Download
AbstractAbstract PDF

In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650°C / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.

Article image
Effect of Dry-Electropolishing on the High Cycle Fatigue Properties of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting
Dong-Hoon Yang, Young-Kyun Kim, Yujin Hwang, Myoung-Se Kim, Kee-Ahn Lee
J Korean Powder Metall Inst. 2019;26(6):471-476.   Published online December 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.6.471
  • 102 View
  • 6 Download
  • 2 Citations
AbstractAbstract PDF

Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al-4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 μm and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 μm and 3.15 μm, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.

Citations

Citations to this article as recorded by  
  • High-Throughput Microstructural Characterization and Process Correlation Using Automated Electron Backscatter Diffraction
    J. Elliott Fowler, Timothy J. Ruggles, Dale E. Cillessen, Kyle L. Johnson, Luis J. Jauregui, Robert L. Craig, Nathan R. Bianco, Amelia A. Henriksen, Brad L. Boyce
    Integrating Materials and Manufacturing Innovation.2024; 13(3): 641.     CrossRef
  • In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy
    Young-Kyun Kim, Min-Seok Baek, Sangsun Yang, Kee-Ahn Lee
    Additive Manufacturing.2021; 38: 101832.     CrossRef
Article image
Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment
Gi Seung Lee, Yeong Seong Eom, Kyung Tae Kim, Byoung Kee Kim, Ji Hun Yu
J Korean Powder Metall Inst. 2019;26(2):138-145.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.138
  • 208 View
  • 2 Download
  • 3 Citations
AbstractAbstract PDF

In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

Citations

Citations to this article as recorded by  
  • Fabrication and mechanical properties of Al–Si-based alloys by selective laser melting process
    Yeong Seong Eom, Kyung Tae Kim, Dong Won Kim, Soo ho Jung, Jung Woo Nam, Dong Yeol Yang, Jungho Choe, Ji Hun Yu, Injoon Son
    Powder Metallurgy.2021; 64(3): 198.     CrossRef
  • Investigation on Interfacial Microstructures of Stainless Steel/Inconel Bonded by Directed Energy Deposition of alloy Powders
    Yeong Seong Eom, Kyung Tae Kim, Soo-Ho Jung, Jihun Yu, Dong Yeol Yang, Jungho Choe, Chul Yong Sim, Seung Jun An
    Journal of Korean Powder Metallurgy Institute.2020; 27(3): 219.     CrossRef
  • Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys
    Yeong Seong Eom, Dong Won Kim, Kyung Tae Kim, Sang Sun Yang, Jungho Choe, Injoon Son, Ji Hun Yu
    Journal of Korean Powder Metallurgy Institute.2020; 27(2): 103.     CrossRef
Article image
Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting
Jeong Min Park, Jin Myoung Jeon, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
J Korean Powder Metall Inst. 2018;25(6):475-481.   Published online December 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.6.475
  • 293 View
  • 5 Download
  • 11 Citations
AbstractAbstract PDF

Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Citations

Citations to this article as recorded by  
  • Selective laser melting additive manufactured H13 tool steel for aluminum extrusion die component construction
    Evangelos Giarmas, Vasileios Tsakalos, Emmanuel Tzimtzimis, Nikolaos Kladovasilakis, Ioannis Kostavelis, Dimitrios Tzovaras, Dimitrios Tzetzis
    The International Journal of Advanced Manufacturing Technology.2024; 133(9-10): 4385.     CrossRef
  • Nanoindentation Creep Behavior of Additively Manufactured H13 Steel by Utilizing Selective Laser Melting Technology
    Evangelos Giarmas, Emmanouil K. Tzimtzimis, Nikolaos Kladovasilakis, Dimitrios Tzovaras, Dimitrios Tzetzis
    Materials.2024; 17(15): 3756.     CrossRef
  • A Parametric Study on the L-PBF Process of an AlSi10Mg Alloy for High-Speed Productivity of Automotive Prototype Parts
    Yeonha Chang, Hyomoon Joo, Wanghyun Yong, Yeongcheol Jo, Seongjin Kim, Hanjae Kim, Yeon Woo Kim, Kyung Tae Kim, Jeong Min Park
    Journal of Powder Materials.2024; 31(5): 390.     CrossRef
  • Development of multi-defect diagnosis algorithm for the directed energy deposition (DED) process with in situ melt-pool monitoring
    Hyewon Shin, Jimin Lee, Seung-Kyum Choi, Sang Won Lee
    The International Journal of Advanced Manufacturing Technology.2023; 125(1-2): 357.     CrossRef
  • Corrosion Resistance of Laser Powder Bed Fused AISI 316L Stainless Steel and Effect of Direct Annealing
    Kichang Bae, Dongmin Shin, Jonghun Lee, Seohan Kim, Wookjin Lee, Ilguk Jo, Junghoon Lee
    Materials.2022; 15(18): 6336.     CrossRef
  • Experimental investigation on the effect of process parameters in additive/subtractive hybrid manufacturing 316L stainless steel
    Chengming Tang, Jibin Zhao, Zhiguo Wang, Yuhui Zhao, Tianran Wang
    The International Journal of Advanced Manufacturing Technology.2022; 121(3-4): 2461.     CrossRef
  • Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel
    Man Jae Sagong, Eun Seong Kim, Jeong Min Park, Gangaraju Manogna Karthik, Byeong-Joo Lee, Jung-Wook Cho, Chong Soo Lee, Takayoshi Nakano, Hyoung Seop Kim
    Materials Science and Engineering: A.2022; 847: 143318.     CrossRef
  • Effect of heat treatment on microstructural heterogeneity and mechanical properties of 1%C-CoCrFeMnNi alloy fabricated by selective laser melting
    Jeong Min Park, Eun Seong Kim, Hyeonseok Kwon, Praveen Sathiyamoorthi, Kyung Tae Kim, Ji-Hun Yu, Hyoung Seop Kim
    Additive Manufacturing.2021; 47: 102283.     CrossRef
  • Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion
    Eo Ryeong Lee, Se Eun Shin, Naoki Takata, Makoto Kobashi, Masaki Kato
    Materials.2020; 13(18): 3927.     CrossRef
  • Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel
    Jin Myoung Jeon, Jeong Min Park, Ji-Hun Yu, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
    Materials Science and Engineering: A.2019; 763: 138152.     CrossRef
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
Article image
A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process
Jaecheol Yun, Jungho Choe, Ki-Bong Kim, Sangsun Yang, Dong-Yeol Yang, Yong-Jin Kim, Chang-Woo Lee, Chang-Woo Lee
J Korean Powder Metall Inst. 2018;25(2):137-143.   Published online April 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.2.137
  • 199 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

In this study, two types of SKD61 tool-steel samples are built by a selective laser melting (SLM) process using the different laser scan speeds. The characteristics of two kinds of SKD61 tool-steel powders used in the SLM process are evaluated. Commercial SKD61 tool-steel power has a flowability of 16.68 sec/50 g and its Hausner ratio is calculated to be 1.25 by apparent and tapped density. Also, the fabricated SKD61 tool steel powder fabricated by a gas atomization process has a flowability of 21.3 sec/50 g and its Hausner ratio is calculated to be 1.18. Therefore, we confirmed that the two powders used in this study have excellent flowability. Samples are fabricated to measure mechanical properties. The highest densities of the SKD61 tool-steel samples, fabricated under the same conditions, are 7.734 g/cm3 (using commercial SKD61 powder) and 7.652 g/cm3 (using fabricated SKD61 powder), measured with Archimedes method. Hardness is measured by Rockwell hardness testing equipment 5 times and the highest hardnesses of the samples are 54.56 HRC (commercial powder) and 52.62 HRC (fabricated powder). Also, the measured tensile strengths are approximately 1,721 MPa (commercial SKD61 powder) and 1,552 MPa (fabricated SKD61 powder), respectively.

Citations

Citations to this article as recorded by  
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
Article image
Study on Microstructures and Hardness of STS316L Fabricated by Selective Laser Melting
Gi Hun Shin, Joon Phil Choi, Kyung Tae Kim, Byoung Kee Kim, Ji Hun Yu
J Korean Powder Metall Inst. 2016;24(3):210-215.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.210
  • 77 View
  • 0 Download
  • 7 Citations
AbstractAbstract PDF

In this study, STS316L powders prepared by gas atomization are used to manufacture bulk structures with dimensions of 10 × 10 × 10 mm3 using selective laser melting (SLM). The microstructures and hardness of the fabricated 316L stainless steel has been investigated with the laser beam overlap varied from 10% to 70%. The microstructures of the fabricated STS316L samples show a decrease in the balling and satellite of powders introducing defect in the bulk samples and the porosity caused by the gap between the molten metal pools disappearing as the overlap ratio increases, whereas a low overlap ratio results in significant balling and a large amount of isolated powders due to the increased gap between the melt pools. Furthermore, the highest value in Vickers hardness is obtained for the sample fabricated by 30% overlapped laser beams. These results show that the overlap ratio of laser beams in the SLM process should be considered as an important process parameter.

Citations

Citations to this article as recorded by  
  • Fabrication and mechanical properties of Al–Si-based alloys by selective laser melting process
    Yeong Seong Eom, Kyung Tae Kim, Dong Won Kim, Soo ho Jung, Jung Woo Nam, Dong Yeol Yang, Jungho Choe, Ji Hun Yu, Injoon Son
    Powder Metallurgy.2021; 64(3): 198.     CrossRef
  • Effect of laser remelting on the surface characteristics of 316L stainless steel fabricated via directed energy deposition
    Seung Yeong Cho, Gwang Yong Shin, Do Sik Shim
    Journal of Materials Research and Technology.2021; 15: 5814.     CrossRef
  • Investigation on Interfacial Microstructures of Stainless Steel/Inconel Bonded by Directed Energy Deposition of alloy Powders
    Yeong Seong Eom, Kyung Tae Kim, Soo-Ho Jung, Jihun Yu, Dong Yeol Yang, Jungho Choe, Chul Yong Sim, Seung Jun An
    Journal of Korean Powder Metallurgy Institute.2020; 27(3): 219.     CrossRef
  • Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys
    Yeong Seong Eom, Dong Won Kim, Kyung Tae Kim, Sang Sun Yang, Jungho Choe, Injoon Son, Ji Hun Yu
    Journal of Korean Powder Metallurgy Institute.2020; 27(2): 103.     CrossRef
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
  • Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment
    Gi Seung Lee, Yeong Seong Eom, Kyung Tae Kim, Byoung Kee Kim, Ji Hun Yu
    Journal of Korean Powder Metallurgy Institute.2019; 26(2): 138.     CrossRef
  • Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel
    Woojin An, Junhyeok Park, Jungsub Lee, Jungho Choe, Im Doo Jung, Ji-Hun Yu, Sangshik Kim, Hyokyung Sung
    Korean Journal of Materials Research.2018; 28(11): 663.     CrossRef
Article image
Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies
Jun-Yun Kang, Jaecheol Yun, Hoyoung Kim, Byunghwan Kim, Jungho Choe, Sangsun Yang, Ji-Hun Yu, Yong-Jin Kim
J Korean Powder Metall Inst. 2016;24(3):202-209.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.202
  • 193 View
  • 0 Download
  • 3 Citations
AbstractAbstract PDF

A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich M2C. In the SLM process, the process parameters such as the laser power (90 W), layer thickness (25 μm), and hatch spacing (80 μm) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which 1 × 1 mm2 blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

Citations

Citations to this article as recorded by  
  • Nanoindentation Creep Behavior of Additively Manufactured H13 Steel by Utilizing Selective Laser Melting Technology
    Evangelos Giarmas, Emmanouil K. Tzimtzimis, Nikolaos Kladovasilakis, Dimitrios Tzovaras, Dimitrios Tzetzis
    Materials.2024; 17(15): 3756.     CrossRef
  • Micro-Texture Analyses of a Cold-Work Tool Steel for Additive Manufacturing
    Jun-Yun Kang, Jaecheol Yun, Byunghwan Kim, Jungho Choe, Sangsun Yang, Seong-Jun Park, Ji-Hun Yu, Yong-Jin Kim
    Materials.2020; 13(3): 788.     CrossRef
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
Article image
The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing
Jungho Choe, Jaecheol Yun, Dong-Yeol Yang, Sangsun Yang, Ji-Hun Yu, Chang-Woo Lee, Yong-Jin Kim
J Korean Powder Metall Inst. 2016;24(3):187-194.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.187
  • 119 View
  • 2 Download
  • 5 Citations
AbstractAbstract PDF

Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Citations

Citations to this article as recorded by  
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
  • Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel
    Woojin An, Junhyeok Park, Jungsub Lee, Jungho Choe, Im Doo Jung, Ji-Hun Yu, Sangshik Kim, Hyokyung Sung
    Korean Journal of Materials Research.2018; 28(11): 663.     CrossRef
  • Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting
    Jeong Min Park, Jin Myoung Jeon, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
    Journal of Korean Powder Metallurgy Institute.2018; 25(6): 475.     CrossRef
  • Evaluation of the Accuracy of Dental Prostheses manufactured by Metal 3D Printer
    Junho Hwang, Yun-Ho Kim, Hyun-Deok Kim, Kyu-Bok Lee
    Journal of Welding and Joining.2018; 36(5): 70.     CrossRef
  • A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process
    Jaecheol Yun, Jungho Choe, Ki-Bong Kim, Sangsun Yang, Dong-Yeol Yang, Yong-Jin Kim, Chang-Woo Lee, Chang-Woo Lee
    Journal of Korean Powder Metallurgy Institute.2018; 25(2): 137.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP