Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
27 "Soon-Jik Hong"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[English]
Investigation on Microstructure and Flowability of Gas Atomized Heat-resistant KHR45A Alloy Powders for Additive Manufacturing
Geonwoo Baek, Mohsen Saboktakin Rizi, Yeeun Lee, SungJae Jo, Joo-Hyun Choi, Soon-Jik Hong
J Powder Mater. 2023;30(1):13-21.   Published online February 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.1.13
  • 1,382 View
  • 763 Download
  • 1 Citations
AbstractAbstract PDF

In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.

Citations

Citations to this article as recorded by  
  • Al-based amorphous coatings by warm spraying: Numerical simulation and experimental validation
    Deming Wang, Nianchu Wu, Peng Cao
    Journal of Alloys and Compounds.2024; 1008: 176674.     CrossRef
Article image
[Korean]
Characterization of Classification of Synthesized Ni Nanopowders by Pulsed Wire Evaporation Method
Joong-Hark Park, Geon-Hong Kim, Dong-Jin Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2017;24(5):389-394.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.389
  • 195 View
  • 1 Download
AbstractAbstract PDF

Ni wires with a diameter and length of 0.4 and 100 mm, respectively, and a purity of 99.9% are electrically exploded at 25 cycles per minute. The Ni nanopowders are successfully synthesized by a pulsed wire evaporation (PWE) method, in which Ar gas is used as the ambient gas. The characterization of the nanopowders is carried out using X-ray diffraction (XRD) and a high-resolution transmission electronmicroscope (HRTEM). The Ni nanopowders are classified for a multilayer ceramic condenser (MLCC) application using a type two Air-Centrifugal classifier (model: CNI, MP-250). The characterization of the classified Ni nanopowders are carried out using a scanning electron microscope (SEM) and particle size analysis (PSA) to observe the distribution and minimum classification point (minimum cutting point) of the nanopowders.

Article image
[English]
Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying
Suk-min Yoon, Cheenepalli Nagarjuna, Dong-won Shin, Chul-hee Lee, Babu Madavali, Soon-jik Hong, Kap-ho Lee
J Korean Powder Metall Inst. 2017;24(5):357-363.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.357
  • 290 View
  • 4 Download
  • 7 Citations
AbstractAbstract PDF

In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.

Citations

Citations to this article as recorded by  
  • Grain Size‐Dependent Thermoelectric Performances of Al2O3 Addition into BiSbTe Alloy During Heat Treatment Fabricated by Mechanical Alloying
    Ji‐Won Ha, Vasudevan Rathinam, Eun‐Ha Go, Soon‐Jik Hong
    Advanced Engineering Materials.2025;[Epub]     CrossRef
  • Revealing the improved thermoelectric performances of (BiSb)2Te3 alloy through rapid solidification of cold-water assisted water atomization approach
    Eun-Ha Go, Rathinam Vasudevan, Ji-Won Ha, Sung-Jae Jo, GeonWoo Baek, Soon-Jik Hong
    Journal of Alloys and Compounds.2025; 1010: 177548.     CrossRef
  • Microstructural and Thermoelectric Properties of Heat-treated Al2O3 Doped BiSbTe Alloy
    Jiwon Ha, Vasudevan Rathinam, Eunha Go, Soonjik Hong
    Journal of the Japan Society of Powder and Powder Metallurgy.2025; 72(Supplement): S983.     CrossRef
  • Advancement of thermoelectric performances through the dispersion of expanded graphene on p-type BiSbTe alloys
    Eun-Ha Go, Rathinam Vasudevan, Babu Madavali, Peyala Dharmaiah, Min-Woo Shin, Sung Ho Song, Soon-Jik Hong
    Powder Metallurgy.2023; 66(5): 722.     CrossRef
  • Influence of milling atmosphere on the structure and magnetic properties of mechanically alloyed Fe40Co30Ni30
    Alex Abraham Paul, Anuj Rathi, Ganesh Varma Thotakura, Tanjore V. Jayaraman
    Materials Chemistry and Physics.2021; 258: 123897.     CrossRef
  • Enhancement of mechanical properties and thermoelectric performance of spark plasma sintered P-type Bismuth Telluride by powder surface oxide reduction
    Ahmed A. Abdelnabi, Vickram Lakhian, Joseph R. McDermid, Yu-Chih Tseng, James S. Cotton
    Journal of Alloys and Compounds.2021; 858: 157657.     CrossRef
  • Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds
    Kaouther Zaara, Mahmoud Chemingui, Virgil Optasanu, Mohamed Khitouni
    International Journal of Minerals, Metallurgy, and Materials.2019; 26(9): 1129.     CrossRef
Article image
[English]
Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
J Korean Powder Metall Inst. 2017;24(2):115-121.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.115
  • 382 View
  • 4 Download
  • 1 Citations
AbstractAbstract PDF

In this work, p-type Bi−Sb−Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.

Citations

Citations to this article as recorded by  
  • Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites
    Seok-Min Yong
    Journal of Ceramic Processing Research.2019; 20(1): 59.     CrossRef
Article image
[English]
Optimization of Spark Plasma Sintering Temperature Conditions for Enhancement of Thermoelectric Performance in Gas-Atomized Bi0.5Sb1.5Te3 Compound
Kwang-yong Jeong, Chul Hee Lee, Peyala Dharmaiah, Soon-Jik Hong
J Korean Powder Metall Inst. 2017;24(2):108-114.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.108
  • 313 View
  • 6 Download
  • 3 Citations
AbstractAbstract PDF

We fabricate fine (<20 μm) powders of Bi0.5Sb1.5Te3 alloys using a large-scale production method and subsequently consolidate them at temperatures of 573, 623, and 673 K using a spark plasma sintering process. The microstructure, mechanical properties, and thermoelectric properties are investigated for each sintering temperature. The microstructural features of both the powders and bulks are characterized by scanning electron microscopy, and the crystal structures are analyzed by X-ray diffraction analysis. The grain size increases with increasing sintering temperature from 573 to 673 K. In addition, the mechanical properties increase significantly with decreasing sintering temperature owing to an increase in grain boundaries. The results indicate that the electrical conductivity and Seebeck coefficient (217 μV/K) of the sample sintered at 673 K increase simultaneously owing to decreased carrier concentration and increased mobility. As a result, a high ZT value of 0.92 at 300 K is achieved. According to the results, a sintering temperature of 673 K is preferable for consolidation of fine (<20 μm) powders.

Citations

Citations to this article as recorded by  
  • Complex microstructure induced high thermoelectric performances of p-type Bi–Sb–Te alloys
    Eun-Ha Go, Babu Madavali, Min-Woo Shin, Sung Ho Song, Soon-Jik Hong
    Materials Chemistry and Physics.2023; 307: 128156.     CrossRef
  • Role of sintering temperature on electronic and mechanical properties of thermoelectric material: A theoretical and experimental study of TiCoSb half-Heusler alloy
    Ajay Kumar Verma, Kishor Kumar Johari, Kriti Tyagi, Durgesh Kumar Sharma, Pawan Kumar, Sudhir Kumar, Sivaiah Bathula, S.R. Dhakate, Bhasker Gahtori
    Materials Chemistry and Physics.2022; 281: 125854.     CrossRef
  • Enhanced thermoelectric properties of Li and Mg co−substituted Bi2Sr2Co2O fabricated by combined conventional sintering and spark plasma sintering
    K. Park, H.Y. Hong, S.Y. Gwon
    Inorganic Chemistry Communications.2022; 145: 110005.     CrossRef
Research Articles
Article image
[English]
Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material
Pradip Rimal, Sang-Min Yoon, Eun-Bin Kim, Chul-Hee Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2016;23(2):126-131.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.126
  • 239 View
  • 4 Download
  • 6 Citations
AbstractAbstract PDF

The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type Bi2Te2.7Se0.3 material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at 360°C. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Citations

Citations to this article as recorded by  
  • Tuning of power factor in bismuth selenide through Sn/Te co doping for low temperature thermoelectric applications
    Ganesh Shridhar Hegde, Ashwatha Narayana Prabhu, Ramakrishna Nayak, C. F. Yang, Y. K. Kuo
    Applied Physics A.2024;[Epub]     CrossRef
  • Enhancing thermoelectric performance of K-doped polycrystalline SnSe through band engineering tuning and hydrogen reduction
    Nan Xin, Yifei Li, Guihua Tang, Longyun Shen
    Journal of Alloys and Compounds.2022; 899: 163358.     CrossRef
  • The effect of powder pre-treatment on the mechanical and thermoelectric properties of spark plasma sintered N-type bismuth telluride
    Ahmed A. Abdelnabi, Vickram Lakhian, Joseph R. McDermid, James S. Cotton
    Journal of Alloys and Compounds.2021; 874: 159782.     CrossRef
  • Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
    Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 115.     CrossRef
  • The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants
    Hyeongsub So, Eunpil Song, Yong-Ho Choa, Kun-Jae Lee
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 141.     CrossRef
  • Enhanced thermoelectric cooling properties of Bi2Te3−xSex alloys fabricated by combining casting, milling and spark plasma sintering
    Seung Tek Han, Pradip Rimal, Chul Hee Lee, Hyo-Seob Kim, Yongho Sohn, Soon-Jik Hong
    Intermetallics.2016; 78: 42.     CrossRef
Article image
[English]
Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying
May Likha Lwin, Sang-min Yoon, Babu Madavali, Chul-Hee Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2016;23(2):120-125.   Published online April 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.2.120
  • 394 View
  • 3 Download
  • 4 Citations
AbstractAbstract PDF

P-type ternary Bi0.5Sb1.5Te3 alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300- 400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Citations

Citations to this article as recorded by  
  • Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys
    Jin-Koo Han, Dong-won Shin, Babu Madavali, Soon-Jik Hong
    Journal of Korean Powder Metallurgy Institute.2017; 24(2): 115.     CrossRef
  • Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body
    Han Ki Cho, Da Hye Kim, Hye Sun Sin, Churl-Hee Cho, Seungwoo Han
    Journal of the Korean Ceramic Society.2017; 54(6): 518.     CrossRef
  • Investigation of the Microstructure and Thermoelectric Properties of P-Type BiSbTe Alloys by Usage of Different Revolutions Per Minute (RPM) During Mechanical Milling
    S.-M. Yoon, B. Madavali, Y.-N. Yoon, S.-J. Hong
    Archives of Metallurgy and Materials.2017; 62(2): 1167.     CrossRef
  • Mechanical and thermoelectric properties of Bi2−xSbxTe3 prepared by using encapsulated melting and hot pressing
    Woo-Jin Jung, Il-Ho Kim
    Journal of the Korean Physical Society.2016; 69(8): 1328.     CrossRef
PM Trend
Article image
[Korean]
Technology Trend Analysis of CO2 Capture and Storage by Patent Information
Su-Jin Lee, Yun-Seock Lee, Jeong-Gu Lee, Soon-Jik Hong, Joong-Beom Lee
J Korean Powder Metall Inst. 2015;22(4):289-297.   Published online August 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.4.289
  • 243 View
  • 3 Download
AbstractAbstract PDF

As recognized by all scientific and industrial groups, carbon dioxide(CO2) capture and storage(CCS) could play an important role in reducing greenhouse gas emissions. Especially carbon capture technology by dry sorbent is considered as a most energy-efficient method among the existing CCS technologies. Patent analysis has been considered to be a necessary step for identifying technological trend and planning technology strategies. This paper is aimed at identifying evolving technology trend and key indicators of dry sorbent from the objective information of patents. And technology map of key patents is also presented. In this study the patents applied in korea, japan, china, canada, US, EU from 1993 to 2013 are analyzed. The result of patent analysis could be used for R&D and policy making of domestic CCS industry.

Article
Article image
[Korean]
Electromagnetic Wave Shielding Effect of Nano-powder Dispersed Epoxy Resin Composite
Jun-Young Han, Chul-Hee Lee, Min-Gyu Choi, Soon-Jik Hong, Joong-Hark Park, Dong-Jin Lee
J Korean Powder Metall Inst. 2015;22(4):234-239.   Published online August 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.4.234
  • 220 View
  • 1 Download
AbstractAbstract PDF

Electronic products are a major part of evolving industry and human life style; however most of them are known to emit electromagnetic waves that have severe health hazards. Therefore, different materials and fabrication techniques are understudy to control or limit transfer of such waves to human body. In this study, nanocomposite powder is dispersed into epoxy resin and shielding effects such as absorption, reflection, penetration and multiple reflections are investigated. In addition, nano size powder (Ni, Fe2O3, Fe-85Ni, C-Ni) is fabricated by pulsed wire evaporation method and dispersed manually into epoxy. Characterization techniques such as X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy are used to investigate the phase analysis, size and shape as well as dispersion trend of a nano powder on epoxy matrix. Shielding effect is measured by standard test method to investigate the electromagnetic shielding effectiveness of planar materials, ASTM D4935. At lower frequency, sample consisting nano-powder of Fe-85%Wt Ni shows better electromagnetic shielding effect compared to only epoxy, only Ni, Fe2O3 and C-Ni samples.

Article image
[Korean]
Importance and Utilization Strategy for Company & Research Institute
Yun-Seock Lee, Soon-Jik Hong
J Korean Powder Metall Inst. 2013;20(5):388-395.
DOI: https://doi.org/10.4150/KPMI.2013.20.5.388
  • 96 View
  • 0 Download
PDF
Article image
[Korean]
Investigation of Material Flow and Industrial Trend of Domestic Europium
Han-Jin Ko, Jeong-Gon Kim, Il-Seuk Lee, Hong-Yoon Kang, Soon-Jik Hong
J Korean Powder Metall Inst. 2013;20(5):382-387.
DOI: https://doi.org/10.4150/KPMI.2013.20.5.382
  • 207 View
  • 0 Download
  • 1 Citations
PDF

Citations

Citations to this article as recorded by  
  • Material Flow Analysis for Stable Supply and Demand Management of Tin
    Sang Hyun Oh, Hong-Yoon Kang, Yong Woo Hwang, Doo Hwan Kim, Kayoung Shin, Nam Seok Kim
    Resources Recycling.2023; 32(4): 18.     CrossRef
Article image
[Korean]
The Effect of Milling Conditions for Dissolution Efficiency of Valuable Metals from PDP Waste Panels
Hyo-Seob Kim, Chan-Mi Kim, Chul-Hee Lee, Sung-Kyu Lee, Hyun-Seon Hong, Jar-Myung Koo, Soon-Jik Hong
J Korean Powder Metall Inst. 2013;20(2):107-113.
DOI: https://doi.org/10.4150/KPMI.2013.20.2.107
  • 218 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF
In this study, the microstructure and valuable metals dissolution properties of PDP waste panel powders were investigated as a function of milling parameters such as ball diameter size, milling time, and rotational speed during high-energy milling process. The complete refinement of powder could achieved at the ball diameter size of 5 mm due to sufficient impact energy and the number of collisions. With increasing milling time, the average particle size was rapidly decreased until the first 30 seconds, then decreased gradually about 3µm at 3 minutes and finally, increased with presence of agglomerated particles of 35µm at 5 minutes. Although there was no significant difference on the size of the particle according to the rotational speed from 900 to 1,100 rpm, the total valuable metals dissolution amount was most excellent at 1,100 rpm. As a result, the best milling conditions for maximum dissolving amount of valuable metals (Mg: 375 ppm, Ag 135 ppm, In: 17 ppm) in this research were achieved with 5 mm of ball diameter size, 3min of milling time, and 1,100 rpm of rotational speed.

Citations

Citations to this article as recorded by  
  • Comparison Of Mercury Distribution Between The Types Of Spent Fluorescent Lamp
    S.W. Rhee, H.-S. Park, H.H. Choi
    Archives of Metallurgy and Materials.2015; 60(2): 1297.     CrossRef
Article image
[Korean]
Fabrication of Ceramic Dental Block by Magnetic Pulsed Compaction
Hyo-Young Park, Hyo-Seob Kim, Soon-Jik Hong
J Korean Powder Metall Inst. 2012;19(5):373-378.
DOI: https://doi.org/10.4150/KPMI.2012.19.5.373
  • 164 View
  • 0 Download
AbstractAbstract PDF
Sintered bulks of ZrO_2 nanopowders were fabricated by magnetic pulsed compaction (MPC) and subsequent two-step sintering employed in this study and the formability effects of nanopowder on mixing condition, pressure and sintering temperature were investigated. The addition of PVA induced and increase in the formability of the sintered bulk. But cracked bulks were obtained on sintering with addition of over 10 wt% PVA due to generation of crack during sintering. The optimum compaction pressure during MPC was 1.0 GPa and mixing conditions included using 5.0 wt% PVA. The optimum processing condition included MPC process, followed by two-step sintering (first at 1000 and then at 1450°C). The sintered bulks with the diameter of 30 mm under these conditions were found to have non crack, ~99% density.
Article image
[Korean]
Recycling Technology and Status of Tellurium Materials
Hyo-Seob Kim, Soon-Jik Hong
J Korean Powder Metall Inst. 2012;19(3):232-238.
DOI: https://doi.org/10.4150/KPMI.2012.19.3.232
  • 117 View
  • 2 Download
PDF
Article image
[Korean]
Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process
Joon-Woo Song, Otaduy Guillermo, Byong-Sun Chun, Soon-Jik Hong
J Korean Powder Metall Inst. 2012;19(3):226-231.
DOI: https://doi.org/10.4150/KPMI.2012.19.3.226
  • 178 View
  • 0 Download
AbstractAbstract PDF
In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 µm at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

Journal of Powder Materials : Journal of Powder Materials
TOP