Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
15 "3D Printing"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Articles
Article image
[Korean]
Fabrication and Optimization of Al2O3 Microchannels Using DLP-Based 3D Printing
Jun-Min Cho, Yong-Jun Seo, Yoon-Soo Han
J Powder Mater. 2025;32(1):59-66.   Published online February 28, 2025
DOI: https://doi.org/10.4150/jpm.2024.00346
  • 265 View
  • 13 Download
AbstractAbstract PDF
This study focused on optimizing the digital light processing (DLP) 3D printing process for high-precision ceramic components using alumina-based slurries. Key challenges, such as cracking during debinding and precision loss due to slurry sedimentation, were addressed by evaluating the exposure time and the nano-to-micro alumina powder ratios. The optimal conditions—exposure time of 15 seconds and a 1:9 mixing ratio—minimized cracking, improved gas flow during debinding, and increased structural precision. Microchannels with diameters above 1.2 mm were successfully fabricated, but channels below 0.8 mm faced challenges due to slurry accumulation and over-curing. These results establish a reliable process for fabricating complex ceramic components with improved precision and structural stability. The findings have significant potential for applications in high-value industries, including aerospace, energy, and healthcare, by providing a foundation for the efficient and accurate production of advanced ceramic structures.
Article image
[Korean]
Microstructure and Mechanical Properties of Laser Powder Bed Fusion 3D-Printed Cu-10Sn Alloy
Jonggyu Kim, Junghoon Won, Wookjin Lee
J Powder Mater. 2024;31(5):422-430.   Published online October 31, 2024
DOI: https://doi.org/10.4150/jpm.2024.00276
  • 332 View
  • 7 Download
AbstractAbstract PDF
This study investigated the optimal process conditions and mechanical properties of Cu-10Sn alloys produced by the powder bed fusion (PBF) method. The optimal PBF conditions were explored by producing samples with various laser scanning speeds and laser power. It was found that under optimized conditions, samples with a density close to the theoretical density could be fabricated using PBF without any serious defects. The microstructure and mechanical properties of samples produced under optimized conditions were investigated and compared with a commercial alloy produced by the conventional method. The hardness, maximum tensile strength, and elongation of the samples were significantly higher than those of the commercially available cast alloy with the same chemical composition. Based on these results, it is expected to be possible to use the PBF technique to manufacture Cu-10Sn products with complex 3D shapes that could not be made using the conventional manufacturing method.
Article image
[English]
Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)
Gargi Roy, Raj Narayan Hajra, Woo Hyeok Kim, Jongwon Lee, Sangwoo Kim, Jeoung Han Kim
J Powder Mater. 2024;31(1):1-7.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.1
  • 2,537 View
  • 97 Download
  • 4 Citations
AbstractAbstract PDF

This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

Citations

Citations to this article as recorded by  
  • Mechanical response and microstructural evolution of a composite joint fabricated by green laser dissimilar welding of VCoNi medium entropy alloy and 17-4PH stainless steel
    Hadiseh Esmaeilpoor, Mahdi Aghaahmadi, Hyun Jong Yoo, Chan Woong Park, Tae Jin Jang, Seok Su Sohn, Jeoung Han Kim
    Journal of Materials Science & Technology.2025; 213: 223.     CrossRef
  • High-integrity diffusion bonding of laser powder bed fused, forged, and rolled Ti–6Al–4V alloys
    Seoyeon Jeon, Hyunjong Ha, Dong Jun Lee, Hyeonil Park, Yong Nam Kwon, Hyunjoo Choi, Hyokyung Sung
    Journal of Materials Research and Technology.2025; 35: 2108.     CrossRef
  • Comparative Review of the Microstructural and Mechanical Properties of Ti-6Al-4V Fabricated via Wrought and Powder Metallurgy Processes
    Raj Narayan Hajra, Gargi Roy, An Seong Min, Hyunseok Lee, Jeoung Han Kim
    Journal of Powder Materials.2024; 31(5): 365.     CrossRef
  • A Parametric Study on the L-PBF Process of an AlSi10Mg Alloy for High-Speed Productivity of Automotive Prototype Parts
    Yeonha Chang, Hyomoon Joo, Wanghyun Yong, Yeongcheol Jo, Seongjin Kim, Hanjae Kim, Yeon Woo Kim, Kyung Tae Kim, Jeong Min Park
    Journal of Powder Materials.2024; 31(5): 390.     CrossRef
Articles
Article image
[English]
Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing
Jinhee Bae, Seungki Jo, Kyung Tae Kim
J Powder Mater. 2023;30(4):318-323.   Published online August 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.4.318
  • 421 View
  • 5 Download
  • 1 Citations
AbstractAbstract PDF

The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Citations

Citations to this article as recorded by  
  • Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model
    Linh Ba Vu, Soo-ho Jung, Jinhee Bae, Jong Min Park, Kyung Tae Kim, Injoon Son, Seungki Jo
    journal of Korean Powder Metallurgy Institute.2024; 31(2): 119.     CrossRef
Article image
[English]
Selective Laser Sintering of Co-Cr Alloy Powders and Sintered Products Properties
Dong-Wan Lee, Minh-Thuyet Nguyen, Jin-Chun Kim
J Powder Mater. 2023;30(1):7-12.   Published online February 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.1.7
  • 454 View
  • 11 Download
AbstractAbstract PDF

Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.

Article image
[Korean]
Analysis of Anisotropic Plasticity of Additively Manufactured Structure using Modified Return Mapping Method
Seung-Yong Yang, Doo-Han Jin, Jeoung-Han Kim
J Powder Mater. 2022;29(4):303-308.   Published online August 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.4.303
  • 343 View
  • 2 Download
AbstractAbstract PDF

The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill’s quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified returnmapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.

Article image
[Korean]
The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact
Hyo-Sang Yoo, Yong-Ho Kim, Hyeon-Taek Son
J Powder Mater. 2022;29(1):28-33.   Published online February 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.1.28
  • 309 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 μm which decreases to 12.5, 13.9, 10.8, and 10.0 μm with increments in the amount of TiC.

Citations

Citations to this article as recorded by  
  • Influence of Curing Agent Amount on Properties of Dynamic Vulcanized Phenyl Silicone Rubber-SEBS-SBS System
    Chunxu Zhao, Bobing He, Xian Chen
    Polymers.2022; 14(24): 5443.     CrossRef
Article image
[Korean]
A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties
Jong Woo Choi, Hae Jin Park, Gyeol Chan Kang, Min Seob Jung, Ki Tae Oh, Sung Hwan Hong, Hyun Gil Kim, Ki Buem Kim
J Powder Mater. 2022;29(1):22-27.   Published online February 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.1.22
  • 307 View
  • 3 Download
AbstractAbstract PDF

Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Article image
[Korean]
Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning
Eun-Ah Kim, Se-Hun Kwon, Dong-Yeol Yang, Ji-Hun Yu, Kwon-Ill Kim, Hak-Sung Lee
J Korean Powder Metall Inst. 2021;28(3):208-215.   Published online June 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.3.208
  • 360 View
  • 12 Download
AbstractAbstract PDF

Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

Review Paper
Article image
[Korean]
Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process
Bin Lee, Dae-Kyeom Kim, Young Il Kim, Do Hoon Kim, Yong Son, Kyoung-Tae Park, Taek-Soo Kim
J Korean Powder Metall Inst. 2020;27(6):509-519.   Published online December 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.6.509
  • 375 View
  • 3 Download
  • 5 Citations
AbstractAbstract PDF

A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Citations

Citations to this article as recorded by  
  • Enhanced flow properties of SiO 2 nanoparticles coated low-cost hydrogenation-dehydrogenation Ti-6Al-4V powder for powder bed fusion process
    Ukju Gim, Sehun Kim, Tae hu Kang, Jongik Lee, Sanghee Jeong, Jimin Han, Bin Lee
    Powder Metallurgy.2025; 68(2): 95.     CrossRef
  • A Study on Fabrication of PCD Endmill Holder using PBF Additive Manufacturing Technology
    Min-Woo Sa, Ho-Min Son, Kyung-Hwan Park, Sang-Geun Lee, Dae-Ho Shin, Dong-Gyu Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 124.     CrossRef
  • Rheological Characteristic Analysis Methods and Tests of Metal Powders for PBF Additive Manufacturing
    Wan-Sik Woo, Ho-Jin Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(10): 1.     CrossRef
  • Residual Stress Analysis of Additive Manufactured A356.2 Aluminum Alloys using X-Ray Diffraction Methods
    SangCheol Park, InYeong Kim, Young Il Kim, Dae-Kyeom Kim, Soong Ju Oh, Kee-Ahn Lee, Bin Lee
    Korean Journal of Metals and Materials.2023; 61(7): 534.     CrossRef
  • Enhancing spreadability of hydrogenation-dehydrogenation titanium powder and novel method to characterize powder spreadability for powder bed fusion additive manufacturing
    Young Il Kim, Dae-Kyeom Kim, InYeong Kim, Sang Cheol Park, Dongju Lee, Bin Lee
    Materials & Design.2022; 223: 111247.     CrossRef
Articles
Article image
[Korean]
A Study on the Debinding Process of High Purity Alumina Ceramic Fabricated by DLP 3D Printing
Hyun-Been Lee, Hye-Ji Lee, Kyung-Ho Kim, Sung-Soo Ryu, Yoonsoo Han
J Korean Powder Metall Inst. 2020;27(6):490-497.   Published online December 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.6.490
  • 481 View
  • 6 Download
  • 1 Citations
AbstractAbstract PDF

The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500°C, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300°C region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.

Citations

Citations to this article as recorded by  
  • Fabrication and Optimization of Al2O3 Microchannels Using DLP-Based 3D Printing
    Jun-Min Cho, Yong-Jun Seo, Yoon-Soo Han
    Journal of Powder Materials.2025; 32(1): 59.     CrossRef
Article image
[Korean]
A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing
Hyun-Been Lee, Hye-Ji Lee, Kyung-Ho Kim, Kyung-Min Kim, Sung-Soo Ryu, Yoonsoo Han
J Korean Powder Metall Inst. 2019;26(6):508-514.   Published online December 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.6.508
  • 294 View
  • 4 Download
  • 2 Citations
AbstractAbstract PDF

In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.

Citations

Citations to this article as recorded by  
  • A Study on Fabrication of PCD Endmill Holder using PBF Additive Manufacturing Technology
    Min-Woo Sa, Ho-Min Son, Kyung-Hwan Park, Sang-Geun Lee, Dae-Ho Shin, Dong-Gyu Kim
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 124.     CrossRef
  • Vat photopolymerization-based 3D printing of complex-shaped and high-performance Al2O3 ceramic tool with chip-breaking grooves: Cutting performance and wear mechanism
    Haidong Wu, Wei Liu, Yuerui Xu, Lifu Lin, Yehua Li, Shanghua Wu
    Journal of Asian Ceramic Societies.2023; 11(1): 159.     CrossRef
Article image
[Korean]
Effect of Photo Initiator Content and Light Exposure Time on the Fabrication of Al2O3 Ceramic by DLP-3D Printing Method
Kyung Min Kim, Hyeondeok Jeong, Yoon Soo Han, Su-Hyun Baek, Young Do Kim, Sung-Soo Ryu
J Korean Powder Metall Inst. 2019;26(4):327-333.   Published online August 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.4.327
  • 395 View
  • 9 Download
AbstractAbstract PDF

In this study, a process is developed for 3D printing with alumina (Al2O3). First, a photocurable slurry made from nanoparticle Al2O3 powder is mixed with hexanediol diacrylate binder and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The optimum solid content of Al2O3 is determined by measuring the rheological properties of the slurry. Then, green bodies of Al2O3 with different photoinitiator contents and UV exposure times are fabricated with a digital light processing (DLP) 3D printer. The dimensional accuracy of the printed Al2O3 green bodies and the number of defects are evaluated by carefully measuring the samples and imaging them with a scanning electron microscope. The optimum photoinitiator content and exposure time are 0.5 wt% and 0.8 s, respectively. These results show that Al2O3 products of various sizes and shapes can be fabricated by DLP 3D printing.

Article image
[Korean]
Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions
Jaecheol Yun, Jungho Choe, Haengna Lee, Ki-Bong Kim, Sangsun Yang, Dong-Yeol Yang, Yong-Jin Kim, Chang-Woo Lee, Ji-Hun Yu
J Korean Powder Metall Inst. 2016;24(3):195-201.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.195
  • 458 View
  • 5 Download
  • 7 Citations
AbstractAbstract PDF

In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of 7.68 g/cm3. The sculptures are built with dimensions of 10 × 10 × 10 mm3 in size using commercial H13 tool steel powder. The density measured by the Archimedes method is 7.64 g/cm3, similar to the powder density of 7.68 g/cm3. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of 25 μm, an overlap of 30%, and a laser scan speed of 200 mm/s.

Citations

Citations to this article as recorded by  
  • Spheroidization of Enamel Powders by Radio Frequency Plasma Treatment and Application to Additive Manufacturing
    Ki-Bong Kim, Dong-Yeol Yang, Yong-Jin Kim, Jungho Choe, Ji-Na Kwak, Woo-Hyung Jung
    Journal of Korean Powder Metallurgy Institute.2020; 27(5): 388.     CrossRef
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
  • Nano-mechanical Behavior of H13 Tool Steel Fabricated by a Selective Laser Melting Method
    Van Luong Nguyen, Eun-ah Kim, Jaecheol Yun, Jungho Choe, Dong-yeol Yang, Hak-sung Lee, Chang-woo Lee, Ji-Hun Yu
    Metallurgical and Materials Transactions A.2019; 50(2): 523.     CrossRef
  • Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel
    Woojin An, Junhyeok Park, Jungsub Lee, Jungho Choe, Im Doo Jung, Ji-Hun Yu, Sangshik Kim, Hyokyung Sung
    Korean Journal of Materials Research.2018; 28(11): 663.     CrossRef
  • Evaluation of Strain-Rate Sensitivity of Selective Laser Melted H13 Tool Steel Using Nanoindentation Tests
    Van Luong Nguyen, Eun-ah Kim, Seok-Rok Lee, Jaecheol Yun, Jungho Choe, Dong-yeol Yang, Hak-sung Lee, Chang-woo Lee, Ji-Hun Yu
    Metals.2018; 8(8): 589.     CrossRef
  • Comparison of Nano-Mechanical Behavior between Selective Laser Melted SKD61 and H13 Tool Steels
    Jaecheol Yun, Van Luong Nguyen, Jungho Choe, Dong-Yeol Yang, Hak-Sung Lee, Sangsun Yang, Ji-Hun Yu
    Metals.2018; 8(12): 1032.     CrossRef
  • A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process
    Jaecheol Yun, Jungho Choe, Ki-Bong Kim, Sangsun Yang, Dong-Yeol Yang, Yong-Jin Kim, Chang-Woo Lee, Chang-Woo Lee
    Journal of Korean Powder Metallurgy Institute.2018; 25(2): 137.     CrossRef
Article image
[Korean]
The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing
Jungho Choe, Jaecheol Yun, Dong-Yeol Yang, Sangsun Yang, Ji-Hun Yu, Chang-Woo Lee, Yong-Jin Kim
J Korean Powder Metall Inst. 2016;24(3):187-194.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2017.24.3.187
  • 277 View
  • 2 Download
  • 5 Citations
AbstractAbstract PDF

Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Citations

Citations to this article as recorded by  
  • Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions
    Jungsub Lee, Jungho Choe, Junhyeok Park, Ji-Hun Yu, Sangshik Kim, Im Doo Jung, Hyokyung Sung
    Materials Characterization.2019; 155: 109817.     CrossRef
  • Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel
    Woojin An, Junhyeok Park, Jungsub Lee, Jungho Choe, Im Doo Jung, Ji-Hun Yu, Sangshik Kim, Hyokyung Sung
    Korean Journal of Materials Research.2018; 28(11): 663.     CrossRef
  • Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting
    Jeong Min Park, Jin Myoung Jeon, Jung Gi Kim, Yujin Seong, Sun Hong Park, Hyoung Seop Kim
    Journal of Korean Powder Metallurgy Institute.2018; 25(6): 475.     CrossRef
  • Evaluation of the Accuracy of Dental Prostheses manufactured by Metal 3D Printer
    Junho Hwang, Yun-Ho Kim, Hyun-Deok Kim, Kyu-Bok Lee
    Journal of Welding and Joining.2018; 36(5): 70.     CrossRef
  • A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process
    Jaecheol Yun, Jungho Choe, Ki-Bong Kim, Sangsun Yang, Dong-Yeol Yang, Yong-Jin Kim, Chang-Woo Lee, Chang-Woo Lee
    Journal of Korean Powder Metallurgy Institute.2018; 25(2): 137.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP