Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
10 Previous issues
Filter
Filter
Article category
Keywords
Authors
Volume 29(6); December 2022
Prev issue Next issue
Articles
Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer
Chang-Yeoul Kim
J Powder Mater. 2022;29(6):453-458.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.453
  • 148 View
  • 10 Download
AbstractAbstract PDF

We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning
Sung-Min Kim, Eun-Ji Cha, Do-Hun Kwon, Sung-Uk Hong, Yeon-Joo Lee, Seok-Jae Lee, Kee-Ahn Lee, Hwi-Jun Kim
J Powder Mater. 2022;29(6):459-467.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.459
  • 40 View
  • 4 Download
AbstractAbstract PDF

Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ
Gye-Won Lee, Yong-Seok Choi, Chang-Woo Jeon, In-Hwan Lee, Yoon-Suk Oh
J Powder Mater. 2022;29(6):468-476.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.468
  • 27 View
  • 1 Download
AbstractAbstract PDF

Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200°C or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

Fabrication of Light-weight Ceramic Insulation Materials by Using Oxide Ceramic Fibers for Reusable Thermal Protection Systems
Seongwon Kim, Min-Soo Nam, Yoon-Suk Oh, Sahn Nahm, Jaesung Shin, Hyeonjun Kim, Bum-Seok Oh
J Powder Mater. 2022;29(6):477-484.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.477
  • 26 View
  • 0 Download
AbstractAbstract PDF

Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.

The Synthesis of Lithium Lanthanum Titanium Oxide for Solid Electrolyte via Ultrasonic Spray Pyrolysis
Jaeseok Roh, MinHo Yang, Kun-Jae Lee
J Powder Mater. 2022;29(6):485-491.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.485
  • 35 View
  • 2 Download
AbstractAbstract PDF

Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.

Preparation and Characterization of N-doped Na2Ti6O13@TiO2 Composites for Visible Light Activity
Duk-Hee Lee, Kyung-Soo Park
J Powder Mater. 2022;29(6):492-498.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.492
  • 41 View
  • 3 Download
AbstractAbstract PDF

N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900°C; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500°C. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.

Fabrication and Evaluation of Powders Containing Calcium Silicate for Solid Self-emulsifying System of Oil
Sung Giu Jin
J Powder Mater. 2022;29(6):499-504.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.499
  • 30 View
  • 0 Download
AbstractAbstract PDF

The objective of this study is to assess the impact of spray drying conditions on medium-chain triglyceride (MCT) loading, solubility, and release of an MCT-loaded solid self-emulsifying system in a water-insoluble oily substance. MCT-loaded solid self-emulsifying systems are prepared by spray drying with SDS and calcium silicate. The effects of inlet temperature (60, 80, or 100°C) and feed solution composition (0, 10, 50, 90, or 100% ethanol) on physicochemical properties of MCT-loaded solid self-emulsifying systems are studied. The inlet temperature significantly affects the water solubility of MCT. Moreover, the feed solution composition significantly affects water solubility, release rate, and MCT loading. The MCT-loaded solid self-emulsifying system obtained at 60°C using 90% ethanol feed solution shows the best physicochemical properties among the synthesized products and exhibits better water solubility (4.43 ± 0.44 vs. 0 μg/mL) and release (94.4 ± 1.6 vs. 32.8 ± 7.4%, 60 min) than a commercial product. Furthermore, the MCT-loaded solid self-emulsifying system shows an excellent emulsion droplet size (approximately 230 nm).

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres
Yomin Choi, Hyun‐Gyoo Shin
J Powder Mater. 2022;29(6):505-510.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.505
  • 24 View
  • 0 Download
AbstractAbstract PDF

The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50ºC. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating
Seong-Jae Jeong, Mi-Se Chang, Jae-Won Jeong, Sang-Sun Yang, Young-Tae Kwon
J Powder Mater. 2022;29(6):511-516.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.511
  • 38 View
  • 0 Download
AbstractAbstract PDF

Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn–Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Effect of Mo Addition on the Austenite Stability of Nanocrystalline Fe-7wt.%Mn Alloy Fabricated by Spark Plasma Sintering
Woochul Shin, Seung Bae Son, Jae-Gil Jung, Seok-Jae Lee
J Powder Mater. 2022;29(6):517-522.   Published online December 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.6.517
  • 30 View
  • 2 Download
AbstractAbstract PDF

We investigate the austenite stability in nanocrystalline Fe-7%Mn-X%Mo (X = 0, 1, and 2) alloys fabricated by spark plasma sintering. Mo is known as a ferrite stabilizing element, whereas Mn is an austenite stabilizing element, and many studies have focused on the effect of Mn addition on austenite stability. Herein, the volume fraction of austenite in nanocrystalline Fe-7%Mn alloys with different Mo contents is measured using X-ray diffraction. Using a disk compressive test, austenite in Fe–Mn–Mo alloys is confirmed to transform into strain-induced martensite during plastic deformation by a disk d. The variation in austenite stability in response to the addition of Mo is quantitatively evaluated by comparing the k-parameters of the kinetic equation for the strain-induced martensite transformation.


Journal of Powder Materials : Journal of Powder Materials