Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
21 "In-Shup Ahn"
Filter
Filter
Article category
Keywords
Publication year
Authors
Articles
Article image
[Korean]
Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process
In-Shup Ahn, Dong-Kyu Park, Kwang-Bok Ahn, Seoung-Mok Shin
J Korean Powder Metall Inst. 2019;26(2):112-118.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.112
  • 244 View
  • 4 Download
AbstractAbstract PDF

Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and 15.9 um/m°C, respectively, for tempered alloy composite.

Article image
[Korean]
Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying
Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2019;26(2):107-111.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.107
  • 151 View
  • 1 Download
AbstractAbstract PDF

The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger’s equation. The mechanically activated material has been called “the driven material” as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the “metabolic energy” and “the effective input energy”, respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Article image
[Korean]
The Effects of Si or Sn on the Sintered Properties of Fe-(Mo,Mn)-P Lean alloy
Woo-Young Jung, Jin-Uk Ok, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2018;25(4):302-308.   Published online August 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.4.302
  • 179 View
  • 1 Download
AbstractAbstract PDF

A lean alloy is defined as a low alloy steel that minimizes the content of the alloying elements, while maintaining the characteristics of the sintered alloy. The purpose of this study is to determine the change in microstructure and mechanical properties due to the addition of silicon or tin in Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys. Silicon- or tin-added F-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P master alloys were compacted at 700 MPa and subsequently sintered under a H2-N2 atmosphere at 1120°C. The sintered density of three alloy systems decreases under the same compacting pressure due to dimensional expansion with increasing Si content. As the diffusion rate in the Fe-P-Mo system is higher than that in the Fe-P-Mn system, the decrease in the sintered density is the largest in the Fe-PMn system. The sintered density of Sn added alloys does not change with the increasing Sn content due to the effect of non-dimensional changes. However, the effect of Si addition on the transverse rupture strengthening enhancement is stronger than that of Sn addition in these lean alloys.

Article image
[Korean]
Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density
Woo-Young Jung, Jin-Uk Ok, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2017;24(5):400-405.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.400
  • 378 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and 7.2 g/cm3. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with 7.2 g/cm3 is twice as high as that compacted with 7.0 g/cm3.

Citations

Citations to this article as recorded by  
  • The Effects of Si or Sn on the Sintered Properties of Fe-(Mo,Mn)-P Lean alloy
    Woo-Young Jung, Jin-Uk Ok, Dong-Kyu Park, In-Shup Ahn
    Journal of Korean Powder Metallurgy Institute.2018; 25(4): 302.     CrossRef
Article image
[Korean]
The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact
Jin-Woo Park, Jin-Uk Ok, Woo-young Jung, Dong-kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2017;24(4):292-297.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.292
  • 158 View
  • 1 Download
AbstractAbstract PDF

A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at 950°C for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and Al2O3 upon the addition of Si oxide. Si oxides promote the formation of Al2O3 and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Article image
[Korean]
A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy
Jin-Woo Parka, Byung-Hyun Ko, Woo-Young Jung, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2016;23(6):426-431.   Published online December 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.6.426
  • 173 View
  • 1 Download
AbstractAbstract PDF

The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an Al2O3 film on the metal surface in an oxidizing atmosphere at high temperatures up to 1400°C. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at 950°C for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Article image
[Korean]
Mechanical Properties of Fe-P-(Mo,Mn) Sintered Alloy Related with Si Contents
Woo-Young Jung, Dong-Kyu Park, Byung-Hyun Ko, Jin-Woo Park, In-Shup Ahn
J Korean Powder Metall Inst. 2016;23(5):397-401.   Published online October 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.5.397
  • 216 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

A lean alloy is defined as a low alloy steel with a minimum amount of the alloying element that maintains the characteristics of the sintered alloy. It is well known that the addition of elements such as Cr, P, Si, or Mn improves the mechanical characteristics of the alloy, but decreases the sinterability. The mother alloy is used to avoid an oxidation reaction with the alloying elements of Cr, P, Si or Mn. The purpose of this study is to determine the change in the mechanical properties of Fe-P-Mo and Fe-P-Mn alloys as a result of the addition of Si. In this article, the Fe-P-Mo and Fe-P-Mn alloys to which Si is added are compacted at 7.0 g/cm3 and then sintered in H2-N2 at 1120°C. The P around the macropores and large grains reduces due to the formation of SiO2 as the Si content increases. This is caused by the increase in strength owing to reducing intergranular fracture by suppressing the reaction with oxygen.

Citations

Citations to this article as recorded by  
  • The Effects of Si or Sn on the Sintered Properties of Fe-(Mo,Mn)-P Lean alloy
    Woo-Young Jung, Jin-Uk Ok, Dong-Kyu Park, In-Shup Ahn
    Journal of Korean Powder Metallurgy Institute.2018; 25(4): 302.     CrossRef
  • Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density
    Woo-Young Jung, Jin-Uk Ok, Dong-Kyu Park, In-Shup Ahn
    Journal of Korean Powder Metallurgy Institute.2017; 24(5): 400.     CrossRef
Article image
[Korean]
The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel
Jin-Woo Park, Byung-Hyun Ko, Woo-young Jung, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2016;23(3):240-246.   Published online June 1, 2016
DOI: https://doi.org/10.4150/KPMI.2016.23.3.240
  • 198 View
  • 1 Download
AbstractAbstract PDF

In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at 950°C up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form Al2O3 and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

Article image
[Korean]
The Effect of Oxides Additives on Anti-corrosion Properties of Sintered 316L Stainless Steel
Jong-Pil Lee, Ji-Hyun Hong, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2015;22(4):271-277.   Published online August 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.4.271
  • 142 View
  • 2 Download
AbstractAbstract PDF

As wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anti-corrosion even at high temperature of 800ºC and exhibit corrosion resistance in air. The oxidation behavior and oxidation mechanism of the sintered 316L stainless was reported at the high temperature in our previous study. In this study, the effects of additives on high-temperature corrosion resistances were investigated above 800ºC at the various oxides (SiO2, Al2O3, MgO and Y2O3) added STS respectively as an oxidation inhibitor. The morphology of the oxide layers were observed by SEM and the oxides phase and composition were confirmed by XRD and EDX. As a result, the weight of STS 316L sintered body increased sharply at 1000oC and the relative density of specimen decreased as metallic oxide addition increased. Compared with STS 316L sintered parts, weight change ratio corresponding to different oxidation time at 900oC and 1000oC, decreased gradually with the addition of metallic oxide. The best corrosion resistance properties of STS could be improved in case of using Y2O3. The oxidation rate was diminished dramatically by suppression the peeling on oxide layers at Y2O3 added sintered stainless steel.

Article image
[Korean]
Shape Control of Anodic Aluminum Oxide and Effect as Support of Silicon Powder Electrode
Ju-Seok Song, Jong-Keun Ha, Yoo-Young Kim, Dong-Kyu Park, In-Shup Ahn, Jou-Hyeon Ahn, Kwon-Koo Cho
J Korean Powder Metall Inst. 2015;22(4):240-246.   Published online August 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.4.240
  • 194 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at 4°C. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.

Citations

Citations to this article as recorded by  
  • Nano silicon encapsulated in modified copper as an anode for high performance lithium ion battery
    Jong-Keun Ha, Anupriya K. Haridas, Gyu-Bong Cho, Hyo-Jun Ahn, Jou-Hyeon Ahn, Kwon-Koo Cho
    Applied Surface Science.2019; 481: 307.     CrossRef
Article image
[Korean]
The Effects of Composition and Microstructure Variation on the Oxidation Characteristics of Stainless Steels Manufactured by Powder Metallurgy Method
Jong-Pil Lee, Ji-Hyun Hong, Dong-Kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2015;22(1):52-59.   Published online February 1, 2015
DOI: https://doi.org/10.4150/KPMI.2015.22.1.52
  • 289 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

As well-known wrought stainless steel, sintered stainless steel (STS) has excellent high-temperature anticorrosion even at high temperature of 800°C, and exhibits good corrosion resistance in air. However, when temperature increases above 900°C, the corrosion resistance of STS begins to deteriorate and dramatically decreases. In this study, the effects of phase and composition of STS on high-temperature corrosion resistances are investigated for STS 316L, STS 304 and STS 434L above 800°C. The morphology of the oxide layers are observed. The oxides phase and composition are identified using X-ray diffractometer and energy dispersive spectroscopy. The results demonstrate that the best corrosion resistance of STS could be improved to that of 434L. The poor corrosion resistance of the austenitic stainless steels is due to the fact that NiFe2O4 oxides forming poor adhesion between the matrix and oxide film increase the oxidation susceptibility of the material at high temperature.

Citations

Citations to this article as recorded by  
  • The effect of different turbulent flow on failure behavior in secondary loop of the pressurized water reactor
    Y. Hu, L. Zhao, Y.H. Lu, T. Shoji
    Nuclear Engineering and Design.2020; 368: 110812.     CrossRef
Article image
[English]
Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries
Xiaojing Liu, Hyo-Jun Ahn, In-Shup Ahn
J Korean Powder Metall Inst. 2012;19(3):182-188.
DOI: https://doi.org/10.4150/KPMI.2012.19.3.182
  • 182 View
  • 1 Download
AbstractAbstract PDF
In this study, fine cathode materials Ni_3S_2 and NiS_2 were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/Ni_3S_2 and Na/NiS_2 show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.
Article image
[Korean]
A Study on the Sintering Behavior of T42 High Speed Steel by Powder Injection Molding (PIM) Process
Dong-Wook Park, Hye-Seong Kim, Young-Sam Kwon, Kwon-Koo Cho, Su-Gun Lim, In-Shup Ahn
J Korean Powder Metall Inst. 2012;19(2):117-121.
DOI: https://doi.org/10.4150/KPMI.2012.19.2.117
  • 201 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at 60°C for 8 hours and thermal debinded at an N_2-H_2 mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum (10-5 Torr) and various temperatures.

Citations

Citations to this article as recorded by  
  • Effects Of Process Parameters On Cu Powder Synthesis Yield And Particle Size In A Wet-Chemical Process
    Y.M. Shin, J.-H. Lee
    Archives of Metallurgy and Materials.2015; 60(2): 1247.     CrossRef
Article image
[Korean]
The Characteristic Changes of Sintered WC-10Co Fabricated by PIM Method with Different Carbon Content
Sang-Dae Kang, Dong-Wook Park, Young-Sam Kwon, Kwon-Koo Cho, In-Shup Ahn
J Korean Powder Metall Inst. 2011;18(3):262-268.
DOI: https://doi.org/10.4150/KPMI.2011.18.3.262
  • 168 View
  • 0 Download
AbstractAbstract PDF
In order to investigate the microstructure and mechanical properties of WC-10 wt% Co insert tool alloy fabricated by PIM (Powder Injection Molding) process, the feedstock of WC-10 wt% and wax used as a kind of binder were mixed together by two blade mixer. After injection molding, the debinding process was carried out by two-steps. First, solvent extraction, in which the binder was eliminated by putting the specimen into normal hexane for 24 hrs at 60°C, and subsequently thermal debinding which was conducted at 260°C and 480°C for 6 hrs in the mixed gas of H_2/N_2, respectively. Meantime, in order to compensate the decarburization due to hydrogen, 1.2~1.8% of carbon was added to ensure the integrity of the phase. Finally, the specimens were sintered in vacuum under different temperatures, and the relative density of 99.8% and hardness of 2100 Hv can be achieved when sintered at 1380°C, even the TRS is lower than the conventional sintering process.
Article image
[Korean]
The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process
Kyoung-Rok Do, Sung-Hyun Choi, Young-Sam Kwon, Kwon-Koo Cho, In-Shup Ahn
J Korean Powder Metall Inst. 2010;17(4):312-318.
DOI: https://doi.org/10.4150/KPMI.2010.17.4.312
  • 159 View
  • 0 Download
AbstractAbstract PDF
High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at 60°C for 24 hours and thermal debinded at N_2-H_2 mixed gas atmosphere for 14 hours. Specimens were sintered in N_2, H_2 gas atmosphere and vacuum condition between 1200 and 1320°C. In result, polymer degradation temperatures about optimum conditions were found at 250°C and 480°C. After sintering at N_2 gas atmosphere, maximum hardness of 310Hv was observed at 1280°C. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at H_2 gas atmosphere, relative density was observed to 94.5% at 1200°C. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of 10-5 torr at temperature of 1240°C, full density and 550Hv hardness were obtained without precipitation of MC and M_6C in grain boundary.

Journal of Powder Materials : Journal of Powder Materials
TOP