Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
9 Previous issues
Filter
Filter
Article category
Keywords
Authors
Funded articles
Volume 31(1); February 2024
Prev issue Next issue
Research Articles
Article image
[English]
Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)
Gargi Roy, Raj Narayan Hajra, Woo Hyeok Kim, Jongwon Lee, Sangwoo Kim, Jeoung Han Kim
J Powder Mater. 2024;31(1):1-7.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.1
  • 2,202 View
  • 89 Download
  • 4 Citations
AbstractAbstract PDF

This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

Citations

Citations to this article as recorded by  
  • Mechanical response and microstructural evolution of a composite joint fabricated by green laser dissimilar welding of VCoNi medium entropy alloy and 17-4PH stainless steel
    Hadiseh Esmaeilpoor, Mahdi Aghaahmadi, Hyun Jong Yoo, Chan Woong Park, Tae Jin Jang, Seok Su Sohn, Jeoung Han Kim
    Journal of Materials Science & Technology.2025; 213: 223.     CrossRef
  • High-integrity diffusion bonding of laser powder bed fused, forged, and rolled Ti–6Al–4V alloys
    Seoyeon Jeon, Hyunjong Ha, Dong Jun Lee, Hyeonil Park, Yong Nam Kwon, Hyunjoo Choi, Hyokyung Sung
    Journal of Materials Research and Technology.2025; 35: 2108.     CrossRef
  • Comparative Review of the Microstructural and Mechanical Properties of Ti-6Al-4V Fabricated via Wrought and Powder Metallurgy Processes
    Raj Narayan Hajra, Gargi Roy, An Seong Min, Hyunseok Lee, Jeoung Han Kim
    Journal of Powder Materials.2024; 31(5): 365.     CrossRef
  • A Parametric Study on the L-PBF Process of an AlSi10Mg Alloy for High-Speed Productivity of Automotive Prototype Parts
    Yeonha Chang, Hyomoon Joo, Wanghyun Yong, Yeongcheol Jo, Seongjin Kim, Hanjae Kim, Yeon Woo Kim, Kyung Tae Kim, Jeong Min Park
    Journal of Powder Materials.2024; 31(5): 390.     CrossRef
Article image
[English]
Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion
Seungyeon Lee, Kyung Tae Kim, Ji-Hun Yu, Hyoung Seop Kim, Jae Wung Bae, Jeong Min Park
J Powder Mater. 2024;31(1):8-15.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.8
  • 2,422 View
  • 119 Download
  • 2 Citations
AbstractAbstract PDF

The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

Citations

Citations to this article as recorded by  
  • Cryogenic tensile behavior of carbon-doped CoCrFeMnNi high-entropy alloys additively manufactured by laser powder bed fusion
    Haeum Park, Hyeonseok Kwon, Kyung Tae Kim, Ji-Hun Yu, Jungho Choe, Hyokyung Sung, Hyoung Seop Kim, Jung Gi Kim, Jeong Min Park
    Additive Manufacturing.2024; 86: 104223.     CrossRef
  • Recent progress in high-entropy alloys for laser powder bed fusion: Design, processing, microstructure, and performance
    Asker Jarlöv, Zhiguang Zhu, Weiming Ji, Shubo Gao, Zhiheng Hu, Priyanka Vivegananthan, Yujia Tian, Devesh Raju Kripalani, Haiyang Fan, Hang Li Seet, Changjun Han, Liming Tan, Feng Liu, Mui Ling Sharon Nai, Kun Zhou
    Materials Science and Engineering: R: Reports.2024; 161: 100834.     CrossRef
Article image
[Korean]
Development of Composite-film-based Flexible Energy Harvester using Lead-free BCTZ Piezoelectric Nanomaterials
Gwang Hyeon Kim, Hyeon Jun Park, Bitna Bae, Haksu Jang, Cheol Min Kim, Donghun Lee, Kwi-Il Park
J Powder Mater. 2024;31(1):16-22.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.16
  • 542 View
  • 22 Download
  • 7 Citations
AbstractAbstract PDF
Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and selfpowered devices owing to their excellent mechanical durability and output performance. In this study, we design a leadfree piezoelectric nanocomposite utilizing (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solidstate reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 A, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.

Citations

Citations to this article as recorded by  
  • Long‐Lasting, Steady and Enhanced Energy Harvesting by Inserting a Conductive Layer into the Piezoelectric Polymer
    HakSu Jang, Gwang Hyeon Kim, Dong Won Jeon, Hyeon Jun Park, BitNa Bae, Nagamalleswara Rao Alluri, Cheol Min Kim, Changyeon Baek, Min‐Ku Lee, Sung Beom Cho, Gyoung‐Ja Lee, Kwi‐Il Park
    Advanced Functional Materials.2025;[Epub]     CrossRef
  • Flexible hybrid thermoelectric films made of bismuth telluride-PEDOT:PSS composites enabled by freezing-thawing process and simple chemical treatment
    Cheol Min Kim, Seoha Kim, Nagamalleswara Rao Alluri, Bitna Bae, Momanyi Amos Okirigiti, Gwang Hyun Kim, Hyeon Jun Park, Haksu Jang, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Kwi-Il Park
    Materials Today Chemistry.2025; 44: 102532.     CrossRef
  • Dual-controlled piezoelectric composite film with enhanced crystallinity and defect-free via solvent vapor treatment
    HakSu Jang, Hyeon Jun Park, Gwang Hyeon Kim, Cheol Min Kim, Nagamalleswara Rao Alluri, BitNa Bae, HyoMin Jeon, DongHun Lee, Kwi-Il Park
    Nano Energy.2025; 136: 110705.     CrossRef
  • Optimized Process and Mechanical and Electrical Analysis of Polyimide/Pb(Zr,Ti)O3-Based Flexible Piezoelectric Composites
    Junki Lee, Sang-il Yoon, Hyunseung Kim, Chang Kyu Jeong
    Journal of Powder Materials.2025; 32(1): 16.     CrossRef
  • Flexible Thermoelectric Energy Harvester with Stacked Structure of Thermoelectric Composite Films Made of PVDF and Bi2Te3-Based Particles
    Da Eun Shin, Nagamalleswara Rao Alluri, Kwi-Il Park
    ACS Applied Energy Materials.2024; 7(19): 8288.     CrossRef
  • Enhanced energy harvesting of fibrous composite membranes via plasma-piezopolymer interaction
    Hyeon Jun Park, Bitna Bae, HakSu Jang, Dong Yeol Hyeon, Dong Hun Lee, Gwang Hyun Kim, Cheol Min Kim, Nagamalleswara Rao Alluri, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Kwi-Il Park
    Nano Energy.2024; 131: 110299.     CrossRef
  • CoFe2O4-BaTiO3 core-shell-embedded flexible polymer composite as an efficient magnetoelectric energy harvester
    Bitna Bae, Nagamalleswara Rao Alluri, Cheol Min Kim, Jungho Ryu, Gwang Hyeon Kim, Hyeon Jun Park, Changyeon Baek, Min-Ku Lee, Gyoung-Ja Lee, Geon-Tae Hwang, Kwi-Il Park
    Materials Today Physics.2024; 48: 101567.     CrossRef
Article image
[Korean]
Effect of Abnormal Grain Growth on Ionic Conductivity in LATP
Hyungik Choi, Yoonsoo Han
J Powder Mater. 2024;31(1):23-29.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.23
  • 1,273 View
  • 49 Download
  • 1 Citations
PDF

Citations

Citations to this article as recorded by  
  • Temperature-dependent microstructural evolution in a compositionally complex solid electrolyte: The role of a grain boundary transition
    Shu-Ting Ko, Chaojie Du, Huiming Guo, Hasti Vahidi, Jenna L. Wardini, Tom Lee, Yi Liu, Jingjing Yang, Francisco Guzman, Timothy J. Rupert, William J. Bowman, Shen J. Dillon, Xiaoqing Pan, Jian Luo
    Journal of Advanced Ceramics.2025; 14(3): 9221047.     CrossRef
Article image
[Korean]
Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying
Jung-Joon Kim, Sang-Min Yoon, Deok-Hyun Han, Jongmin Byun, Young-Kyun Kim
J Powder Mater. 2024;31(1):30-36.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.30
  • 871 View
  • 34 Download
  • 1 Citations
PDF

Citations

Citations to this article as recorded by  
  • Review of “Integrated Computer-Aided Process Engineering Session in the 17th International Symposium on Novel and Nano Materials (ISNNM, 14–18 November 2022)”
    Yeon-Joo Lee, Pil-Ryung Cha, Hyoung-Seop Kim, Hyun-Joo Choi
    MATERIALS TRANSACTIONS.2025; 66(1): 144.     CrossRef
Article image
[Korean]
Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets
Su-Ho An, Young-Keun Jeong
J Powder Mater. 2024;31(1):37-42.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.37
  • 397 View
  • 19 Download
  • 1 Citations
PDF

Citations

Citations to this article as recorded by  
  • Friction Welding of Casted SCM440 and Sintered F-05-140 Dissimilar Steels and Their Joint Properties under Various Welding Conditions
    Jisung Lee, Hansung Lee, Eunhyo Song, Byungmin Ahn
    Journal of Powder Materials.2024; 31(5): 414.     CrossRef
Article image
[Korean]
Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target
Won Hee Lee, Chun Woong Park, Heeyeon Kim, Yuncheol Ha, Jongmin Byun, Young Do Kim
J Powder Mater. 2024;31(1):43-49.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.43
  • 749 View
  • 29 Download
PDF
Article image
[Korean]
Fabrication of Bi2Te2.5Se0.5 by Combining Oxide-reduction and Compressive-forming Process and Its Thermoelectric Properties
Young Soo Lim, Gil-Geun Lee
J Powder Mater. 2024;31(1):50-56.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.50
  • 525 View
  • 17 Download
PDF
Review Paper
Article image
[English]
Research Trends in Electromagnetic Shielding using MXene-based Composite Materials
Siyeon Kim, Jongmin Byun
J Powder Mater. 2024;31(1):57-76.   Published online February 28, 2024
DOI: https://doi.org/10.4150/KPMI.2024.31.1.57
  • 1,793 View
  • 99 Download
  • 1 Citations
AbstractAbstract PDF

Recent advancements in electronic devices and wireless communication technologies, particularly the rise of 5G, have raised concerns about the escalating electromagnetic pollution and its potential adverse impacts on human health and electronics. As a result, the demand for effective electromagnetic interference (EMI) shielding materials has grown significantly. Traditional materials face limitations in providing optimal solutions owing to inadequacy and low performance due to small thickness. MXene-based composite materials have emerged as promising candidates in this context owing to their exceptional electrical properties, high conductivity, and superior EMI shielding efficiency across a broad frequency range. This review examines the recent developments and advantages of MXene-based composite materials in EMI shielding applications, emphasizing their potential to address the challenges posed by electromagnetic pollution and to foster advancements in modern electronics systems and vital technologies.

Citations

Citations to this article as recorded by  
  • Designing dual phase hexaferrite (SrFe12O19) – Perovskite (La0.5Nd0.5FeO3) composites for enhanced electromagnetic wave absorption and band gap modulation
    Pramod D. Mhase, Varsha C. Pujari, Santosh S. Jadhav, Abdullah G. Al-Sehemi, Sarah Alsobaie, Sunil M. Patange
    Composites Communications.2025; 54: 102284.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP