Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
22 "Electrical"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Article image
[English]
Investigation of the Thermal-to-Electrical Properties of Transition Metal-Sb Alloys Synthesized for Thermoelectric Applications
Jong Min Park, Seungki Jo, Sooho Jung, Jinhee Bae, Linh Ba Vu, Kwi-Il Park, Kyung Tae Kim
J Powder Mater. 2024;31(3):236-242.   Published online June 27, 2024
DOI: https://doi.org/10.4150/jpm.2024.00031
  • 789 View
  • 41 Download
  • 2 Citations
AbstractAbstract PDF
The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.

Citations

Citations to this article as recorded by  
  • Improving thermoelectric properties of CuMnSb alloys via strategic alloying with magnetic MnSb and Cu
    Jong Min Park, Seungki Jo, Soo-ho Jung, Jinhee Bae, Linh Ba Vu, Jihun Yu, Kyung Tae Kim
    Materials Letters.2025; 381: 137796.     CrossRef
  • Highly deformable and hierarchical 3D composite sponge for versatile thermoelectric energy conversion
    Jong Min Park, Changyeon Baek, Min-Ku Lee, Nagamalleswara Rao Alluri, Gyoung-Ja Lee, Kyung Tae Kim, Kwi-Il Park
    Applied Surface Science.2025; 692: 162730.     CrossRef
Articles
Article image
[Korean]
Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process
Seoyeon Jeon, Suwon Park, Yongwook Song, Jiwon Park, Hyunyoung Park, Boram Lee, Hyunjoo Choi
J Powder Mater. 2023;30(6):463-469.   Published online December 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.6.463
  • 1,221 View
  • 37 Download
  • 3 Citations
AbstractAbstract PDF

Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/ electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α- Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.

Citations

Citations to this article as recorded by  
  • Trends in Materials Modeling and Computation for Metal Additive Manufacturing
    Seoyeon Jeon, Hyunjoo Choi
    journal of Korean Powder Metallurgy Institute.2024; 31(3): 213.     CrossRef
  • The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review
    Alex Lanzutti, Elia Marin
    Metals.2024; 14(8): 886.     CrossRef
  • Microstructural Effects on the Mechanical Properties of Ti-6Al-4V Fabricated by Direct Energy Deposition
    Juho Kim, Seoyeon Jeon, Hwajin Park, Taeyoel Kim, Hyunjoo Choi
    Journal of Powder Materials.2024; 31(4): 302.     CrossRef
Article image
[Korean]
Fabrication of Polymer Composite with Enhanced Insulation and Mechanical Properties using Aluminum Borate Nanowhiskers
Junhyeok Choi, Sangin Lee, Kiho Song, Taekyung Kim, Changui Ahn
J Powder Mater. 2023;30(4):356-362.   Published online August 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.4.356
  • 452 View
  • 2 Download
  • 1 Citations
AbstractAbstract PDF

Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.

Citations

Citations to this article as recorded by  
  • Fabrication of Al18B4O33 Spherical Powder with Increased Fluidity via Control of B2O3 Particle Size and Distribution
    Kiho Song, Sang in Lee, Hyunseung Song, Changui Ahn
    Journal of Powder Materials.2024; 31(6): 513.     CrossRef
Article image
[English]
Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing
Jinhee Bae, Seungki Jo, Kyung Tae Kim
J Powder Mater. 2023;30(4):318-323.   Published online August 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.4.318
  • 508 View
  • 6 Download
  • 1 Citations
AbstractAbstract PDF

The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Citations

Citations to this article as recorded by  
  • Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model
    Linh Ba Vu, Soo-ho Jung, Jinhee Bae, Jong Min Park, Kyung Tae Kim, Injoon Son, Seungki Jo
    journal of Korean Powder Metallurgy Institute.2024; 31(2): 119.     CrossRef
Article image
[Korean]
Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode
Do Youn Kim, Hanbyeol Son, Hyo-Ryoung Lim
J Powder Mater. 2023;30(4):310-317.   Published online August 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.4.310
  • 326 View
  • 5 Download
AbstractAbstract PDF

Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP–CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP–CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Article image
[Korean]
Effect of WC Particle Size on the Microstructure, Mechanical and Electrical Properties of Ag/WC Sintered Electrical Contact Material
Soobin Kim, So-Yeon Park, Jong-Bin Lim, Soon Ho Kwon, Kee-Ahn Lee
J Powder Mater. 2023;30(3):242-248.   Published online June 1, 2023
DOI: https://doi.org/10.4150/KPMI.2023.30.3.242
  • 321 View
  • 3 Download
  • 1 Citations
AbstractAbstract PDF

The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 μm, and WC-2 had an AGS of 0.35 μm. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall–Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.

Citations

Citations to this article as recorded by  
  • Enhanced Epoxy Composites Reinforced by 3D-Aligned Aluminum Borate Nanowhiskers
    Hyunseung Song, Kiho Song, Haejin Hwang, Changui Ahn
    Materials.2024; 17(19): 4727.     CrossRef
Article image
[Korean]
Development of Aluminum Matrix Composites Containing Nano-carbon Materials
Jungjoon Kim, Daeyoung Kim, Hyunjoo Choi
J Korean Powder Metall Inst. 2021;28(3):253-258.   Published online June 1, 2021
DOI: https://doi.org/10.4150/KPMI.2021.28.3.253
  • 283 View
  • 5 Download
  • 2 Citations
AbstractAbstract PDF

There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminumbased composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.

Citations

Citations to this article as recorded by  
  • Synergistic strengthening of aluminum with SiC by grain refinement and dispersion hardening
    Kanhu C. Nayak, Juyeon Han, Suwon Park, Miran Joo, Kon‐Bae Lee, Donghyun Bae, Hyunjoo Choi
    Journal of the American Ceramic Society.2023; 106(12): 7340.     CrossRef
  • Synergetic effect of milling speed and duration on particle morphology and mechanical properties of nanocrystalline Al matrix containing SiC
    K.C. Nayak, J.Y. Han, C.H. Jung, M.R. Joo, K.B. Lee, D.H. Bae, H.J. Choi
    Powder Metallurgy.2023; 66(5): 519.     CrossRef
Article image
[English]
Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid
Chu Dac Phuc, Nguyen Minh Thuyet, Jin-Chun Kim
J Korean Powder Metall Inst. 2020;27(6):449-457.   Published online December 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.6.449
  • 500 View
  • 5 Download
  • 3 Citations
AbstractAbstract PDF

Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Citations

Citations to this article as recorded by  
  • Identification of the reconstruction induced high-entropy spinel oxide nanosheets for boosting alkaline water oxygen evolution
    Xuexue Wang, Runqing Lu, Shanhe Gong, Shaokang Yang, Wenbo Wang, Zhongti Sun, Xiaozhen Zhang, Jun Liu, Xiaomeng Lv
    Chemical Engineering Journal.2025; 503: 158488.     CrossRef
  • Trends in bimetallic nanomaterials and methods for the removal of p-nitrophenol and its derivatives from wastewater
    M. S. Qatan, F. Arshad, M. Miskam, G. A. Naikoo
    International Journal of Environmental Science and Technology.2024; 21(5): 5247.     CrossRef
  • Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires
    K.V. Suliz, A.Yu. Kolosov, V.S. Myasnichenko, N.I. Nepsha, N.Yu. Sdobnyakov, A.V. Pervikov
    Advanced Powder Technology.2022; 33(3): 103518.     CrossRef
Article image
[English]
Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties
Minh Thuyet-Nguyena, Jin-Chun Kim
J Korean Powder Metall Inst. 2020;27(1):14-24.   Published online February 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.1.14
  • 323 View
  • 1 Download
  • 2 Citations
AbstractAbstract PDF

In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Nigraphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Citations

Citations to this article as recorded by  
  • Top-down strategies for achieving high-quality graphene: Recent advancements
    Arpana Agrawal
    Journal of Industrial and Engineering Chemistry.2025; 142: 103.     CrossRef
  • Electrodeposition of nickel-titanium dioxide coatings and powders from aqueous sulfate solutions
    Tazhibayeva Aigerim Shotaevna, Bayeshova Azhar Kospanovna, Bayeshov Abduali, Osińska Małgorzata
    Polyhedron.2025; 277: 117571.     CrossRef
Article image
[Korean]
Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers
Yeonjoo Lee, Sung-uk Hong, Hyunjoo Choi
J Korean Powder Metall Inst. 2018;25(5):435-440.   Published online October 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.5.435
  • 190 View
  • 1 Download
AbstractAbstract PDF

In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.

Article image
[English]
Development of Carbon Nanotube-copper Hybrid Powder as Conductive Additive
Minjae Lee, Seoungjun Haa, Yeonjoo Lee, Haneul Jang, Hyunjoo Choi
J Korean Powder Metall Inst. 2018;25(4):291-295.   Published online August 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.4.291
  • 624 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.

Citations

Citations to this article as recorded by  
  • Effects of Morphologies of Carbon Nanomaterials on Conductivity of Composites Containing Copper/Carbon Nanomaterial Hybrid Fillers
    Yeonjoo Lee, Sung-uk Hong, Hyunjoo Choi
    Journal of Korean Powder Metallurgy Institute.2018; 25(5): 435.     CrossRef
Article image
[Korean]
Fabrication of CNT dispersed Cu matrix composites by wet mixing and spark plasma sintering process
Seungchan Cho, Ilguk Jo, Sang-Bok Lee, Sang-Kwan Lee, Moonhee Choi, Jehong Park, Hansang Kwon, Yangdo Kim
J Korean Powder Metall Inst. 2018;25(2):158-164.   Published online April 1, 2018
DOI: https://doi.org/10.4150/KPMI.2018.25.2.158
  • 428 View
  • 11 Download
  • 1 Citations
AbstractAbstract PDF

Multi-walled carbon nanotube (MWCNT)–copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT–Cu composites. The electrical conductivities of MWCNT–Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT–Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

Citations

Citations to this article as recorded by  
  • Proposing Machine Learning Models Suitable for Predicting Open Data Utilization
    Junyoung Jeong, Keuntae Cho
    Sustainability.2024; 16(14): 5880.     CrossRef
Article image
[Korean]
Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties
Yoo-Young Kim, Ji-Seub Choi, Hoi-Jin Lee, Kwon-Koo Cho
J Korean Powder Metall Inst. 2017;24(4):308-314.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.308
  • 456 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Fe3O4/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, Fe3O4/Fe nanocomposites are fabricated under the same conditions. The Fe3O4/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The Fe3O4/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the Fe3O4/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for Fe3O4/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

Citations

Citations to this article as recorded by  
  • Preparation of magnetic metal and graphene hybrids with tunable morphological, structural and magnetic properties
    Kyunbae Lee, Joonsik Lee, Byung Mun Jung, Byeongjin Park, Taehoon Kim, Sang Bok Lee
    Applied Surface Science.2019; 478: 733.     CrossRef
Article image
[Korean]
The Effect of SiO2 addition on Oxidation and Electrical Resistance Stability at High-temperature of P/M Fecralloy Compact
Jin-Woo Park, Jin-Uk Ok, Woo-young Jung, Dong-kyu Park, In-Shup Ahn
J Korean Powder Metall Inst. 2017;24(4):292-297.   Published online August 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.4.292
  • 239 View
  • 1 Download
AbstractAbstract PDF

A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at 950°C for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and Al2O3 upon the addition of Si oxide. Si oxides promote the formation of Al2O3 and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.

Article image
[Korean]
Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode
Bon-Ryul Koo, Hyo-Jin Ahn
J Korean Powder Metall Inst. 2017;24(2):153-163.   Published online April 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.2.153
  • 259 View
  • 1 Download
  • 1 Citations
AbstractAbstract PDF

Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (< 10-3 Ω cm) and high transparency (>80%) in the visible region. The solutionbased process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.

Citations

Citations to this article as recorded by  
  • Electrically conductive and anti-corrosive coating on copper foil assisted by polymer-nanocomposites embedded with graphene
    Han Kim, Hyemin Lee, Hyo-Ryoung Lim, Hong-Baek Cho, Yong-Ho Choa
    Applied Surface Science.2019; 476: 123.     CrossRef

Journal of Powder Materials : Journal of Powder Materials
TOP